celduc ${ }^{\circ}$

 relais
PRODUCT GUIDE

www.celduc-relais.com

SOLID STATE RELAYS

MAGNETIC SENSORS

REED RELAYS \& SWITCHES

MADE IN
FRANCE

DEAR CUSTOMERS AND READERS,

With a great feeling of honor I am proud to introduce the first celduc® American catalog celebrating the creation of our marketing and sales office in Chicago during the summer of 2020.

A milestone in celduc® 60 years history

From the first solid state relay in the
 early 80's, celduc® has been constantly bringing new solid state power switching solutions to the customers and has become a global expert in solid state relays and contactors. Our iconic "okpac®" relays beautifies industrial enclosures with its famous blue color all over the world and has created a new standard of quality and reliability for Solid State Relays with more than 1,000,000 pieces being manufactured in our factory in France every year. With a strategy based on products quality recognition and technical cooperation with our customers, we have convinced the most reputed names in the market to join the celduc® adventure, have gone through a fantastic growth all these recent years and have established our brand as the unquestioned SSR leader in Europe. Now it is time for the biggest challenge: Americas!

Always the same ambition: bringing excellence in the solid state relays world

How? It is simple: our solid state relays are based on a unique design of thyristor chips mounted on substrate, connected together and soldered on an aluminum base in a 100\% automated and oxygen free process. The result: our relays withstand more current than the others, have a better thermal derating, and last 50 \% longer (at least). Just try them: you will not get rid of our relays easily!

New ideas and proven technologies

This is the good thing when the engineers and the manufacturing are in the same location: from concept to technology, from design to product, from optimization to new machines, there are only a few doors to cross. Like everyone in our market, we have to choose every year between new machines and new low cost production overseas, unlike everyone in our market, we always choose new machines. At the end, celduc® has definitely the highest automation level in our industry, our unrivaled quality scores demonstrate it.

So, ready to make your switch to celduc®? Enjoy our catalog, and get in touch with our team!

Jean PERROT
CEO celduc® Inc.

MORE THAN 50 YEARS OF HIGH QUALITY LEVEL OF PRODUCTION IN FRANCE.

ANALYSIS OF OUR CUSTOMERS' REQUIREMENTS

celduc (®) relais is the leading global expert and preferred choice for companies all over the world.

CONSTANT PRODUCT DEVELOPMENT

our experienced R\&D engineers are constantly working on developing new products; these represent 10 to 15% of our total production output.

CONTROL OF THE COMPLETE CHAIN
design, development, production, testing and marketing.

WITH A GLOBAL PRESENCE IN OVER 60 COUNTRIES

we have a local presence for our customers. We can therefore better understand their needs and provide them with the best solutions.

WE COMPLY WITH THE MAIN INTERNATIONAL STANDARDS

our products are designed, tested and manufactured in accordance with the strictest international standards.

celduc® relais' products

SOLID STATE RELAYS

Commonly known as SSRs, Solid State Relays represent 70\% of celduc® relais' turnover.
These innovative and very efficient devices are used to control all types of loads used across many industries, such as industrial heating, temperature control, motor control, automation interfaces, etc
The advantages of Solid State Relays (SSR) compared to ElectroMechanical Relays (EMR) are well known (see page 6). celduc® relais is the only solid state relay technology in France, where their products have been made for more than 50 years!

MAGNETIC PROXIMITY SENSORS

Used for monitoring or controlling levels, motion, movement, position and rpm recording. The sky's the limit for these versatile sensors. These sensors are used both by the general public and in major industries, such as automotive, aircraft, telecommunication and automation.

"REED" RELAYS \& SWITCHES

Our Reed switches are used in our own magnetic proximity sensors, Reed relays and Reed switches. Tried and tested, they can last for over 60 years. The range meets the demands of an increasing number of new applications, thanks to their ease of use, compact size and reliability.

SOLID STATE RELAYS

APPLICATIONS

EVERY DAY, MORE AND MORE NEW APPLICATIONS THAT REQUIRE RELIABILITY, SILENT OPERATION AND A LONG SERVICE LIFE USE OUR INNOVATIVE SOLID STATE RELAYS.
HERE ARE SOME EXAMPLES:

HEATING

Plastics processes, Furnaces, Food distribution, Air conditioning, Textiles, Domestic heating, Infrared heating, Drying, Thermoforming, etc.

MOTOR STARTING

Pumps, Compressors, Plastics processes, Conveyors, Fans, etc.

LIGHTING

Public lighting, Cinema, Theater, Airport runway lights, Road lighting, etc.

AUTOMATION

Automation interfaces, Heating element control, Electrovalves, Contactor Coils, Sensor optical isolation.

MISCELLANEOUS

Transformer starting, Power factor correction, Uninterruptible power supplies, Energy source switching, Capacitor banks.

COMPLIANCE WITH STANDARDS SPECIFIC TO EACH INDUSTRY

IN MANY SECTORS, EQUIPMENT COMPONENTS HAVE TO MEET VERY STRICT REQUIREMENTS THAT ARE SPECIFIC TO EACH INDUSTRY.

All of our okpac® SO (as well as SC relays), celpac® 2G SU/SA (including the ESUC current monitoring module) and 2-phase SOB and 3-phase SGT ranges comply with the EN61373 European standard for railway applications and rolling stock equipment: shock and vibration tests.
The following standards relating to fire behavior and fumes are classified: NF F16-101, NF F16-102, EN 45545 and EN 60695-2-10/11/12 (Glow Wire tests (GWFI - GWIT)), blue and black plastic covers and encapsulating resin of SO and SU/SA relays. Our products are also compliant with the EN 50155 standard which applies to all electronic equipment for control, regulation, protection, diagnostic, power supply, etc. installed on rail vehicles.

Several of our products comply with the requirements for medical applications in accordance with EN 60601-1 (VDE 0750).

SOLID STATE RELAYS

STANDARDS

CELDUC® RELAIS HAS DEVELOPED ALL OF ITS OWN EQUIPMENT TESTS. OUR PRODUCTS ARE MANUFACTURED IN ACCORDANCE WITH THE MOST STRINGENT INTERNATIONAL STANDARDS.

- The solid state relays and contactors made by celduc® relais are manufactured in compliance with major international standards :
- IEC/EN60947-4-3 for the other loads
- IEC/EN60947-4-2 for motor control
- IEC 62314
- American and Canadian (UL, cUL, CSA)
- IEC/EN 60950 - VDE0805
- IEC60335-1 - VDE0700-1

Our products also comply with the main European CE marking directives.

- In the UL508A standard, the estimated short circuit current rating is known as the SCCR: Short Circuit Current Rating. On April 1, 2015, our solid state relays successfully attained 100kA UL SCCR certification. In fact, some of our customers request additional certification with an SCCR greater than 5KA in accordance with supplement SB, an appendix to UL 508A.
- Several of our products fulfill the requirements for KOSHA (S-MARK) and EAC (Russia-CIE) certification.
- Our relay manufacturing process complies with ISO9001, version 2008. Our products contain extremely reliable components with a very high level of electromagnetic interference. They therefore have the longest product lifetime on the market.

celduc® relais MANUFACTURES CUSTOMISED PRODUCTS

CELDUC® RELAIS DESIGNS SPECIFIC PRODUCTS IN LINE WITH OUR CUSTOMERS' SPECIFICATIONS AND ADAPTS PRODUCTS FOR OUR CUSTOMERS' APPLICATIONS.

A specific development consisting of SU relays and ESUC modules to control 9 resistive loads with partial load failure detection. This system includes all protections.

Solid state contactor + changeover relay for 3-phase motors.
Dry contact control.
Spring connector.

Motor inverter
with 5 solid state relays.

Solid state relays with IO-Link communication system. Today, it is clear that communication and safety are our two biggest concerns; these issues will challenge us further as we head into the future...

SELECTION CRITERIA

Function	ON/OFF RELAY										DIAGNOSIS / TEMP. REGULATOR 1 pole - Single Phase	
No. of poles	1 pole - Single Phase			1 pole EMC optimised	2 poles Two Phase		3 poles - Three Phase			4 poles Screwin		
Assembly type	Printed circuit board	DIN rail	Screw-in	Screw-in	DIN rail	Screwin	Printed circuit board	DIN rail	Screwin		DIN rail	Screwin
HEATING ELEMENTS: No inrush current												
AC-51	$\begin{aligned} & \text { SLA/SPA/STA } \\ & \text { SKA/SKB } \\ & \text { SKL/SKH } \end{aligned}$	XKA SAL9/SAM9 SUL9/SUM9	$\begin{aligned} & \text { SO9/SOL9 } \\ & \text { SA9/SU9 } \end{aligned}$	$\begin{aligned} & \text { SCFL } \\ & \text { SON } \end{aligned}$	XKM	SOB9	SHT	$\begin{aligned} & \text { SMT } \\ & \text { SGT } \end{aligned}$	$\begin{aligned} & \text { SMT } \\ & \text { SGT } \end{aligned}$	SCQ	$\begin{aligned} & \text { SILD } \\ & \text { SUL+ESUC } \\ & \text { SUL+ } \\ & \text { ECOM } \end{aligned}$	$\begin{aligned} & \text { SU+ } \\ & \text { ESUC } \\ & \text { SU+ } \\ & \text { ECOM } \end{aligned}$
DC-1			SOM/SCM/ SCI/SDI									

INCANDESCENT LAMPS - INFRARED LIGHTS - INDICATOR LIGHTS: strong inrush currents

AC-55b	SKA SKL/SKH	XKA SAL8/SAM8 SUL8/SUM8	$\begin{aligned} & \text { SO8 } \\ & \text { SA8/SU8 } \end{aligned}$	$\begin{aligned} & \text { SCFL } \\ & \text { SON } \end{aligned}$	SOB8	$\begin{aligned} & \text { SMT } \\ & \text { SGT } \end{aligned}$	$\begin{aligned} & \text { SMT } \\ & \text { SGT } \end{aligned}$
DC-6	$\begin{aligned} & \text { SLD/SPD/STD } \\ & \text { SKD } \end{aligned}$	$\begin{aligned} & \text { SLD/SPD/STD } \\ & \text { XKD } \end{aligned}$	$\begin{aligned} & \text { SCM/SCI/SDI } \\ & \text { SOM } \end{aligned}$				

DISCHARGE LAMPS: strong inrush currents, overvoltages at the turn off

| AC-55a | SKA/SKL/SKH | XKA/SAx8/
 SU8 | SO8/SA8/SU8 | SOB8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MOTORS: strong start currents

AC-53	SLA/SPA/STA SKL/SKH	XKL/XKH SAx8/SUx8/ SUx7	$\begin{aligned} & \text { SO8/SA8/SU8 } \\ & \text { SO7/SU7 } \end{aligned}$	$\begin{aligned} & \text { SCFL } \\ & \text { SON } \end{aligned}$	$\begin{aligned} & \text { SOB7 } \\ & \text { SOB8 } \end{aligned}$	$\begin{aligned} & \text { SMT8 } \\ & \text { SGT8 } \end{aligned}$	$\begin{aligned} & \text { SMT8 } \\ & \text { SGT8 } \end{aligned}$
$\begin{aligned} & \text { DC-3/ } \\ & \text { DC-5 } \end{aligned}$							

CONTACTORS - SOLENOID VALVES - ELECTROMAGNETS: high inductive loads

AC-14 <72 VA	SLA/SPA/STA SKA	SLA/SPA/STA XKA	SO8/SA8/SU8 SO7/SU7; SF
AC-15 >72 VA	SLA/SPA/STA SKA/SKL	SLA/SPA/STA XKA/XKL	SO8/SA8/SU8 SO7/SU7; SF
DC-13	SLD/SPD/STD SKD	SLD/SPD/STD XKD	SCC SCM/SOM
DC-14	SLD/SPD/STD SKD	SLD/SPD/STD XKD	SCC SCM/SOM

PLC INPUTS/OUTPUTS: interfaces, low current

| AC input | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DC input | | | | | |
| AC output | SLA/SPA/STA
 SKA | SLA/SPA/STA
 XKA | SF | XKM | |
| DC output | SLD/SPD/STD
 SKD | SLD/SPD/STD
 XKD | | | |

TRANSFORMERS: very strong magnetising currents, overvoltages

AC-56a	SKL/SKH	XKL/XKH	SO7/SOP

CAPACITY (Power factor corrections, Power supplies): strong inrush current

AC-56b	SKL/SKH	XKL/XKH	$\begin{aligned} & \text { SO8 ; SA8/ } \\ & \text { SU8 } \end{aligned}$						$\begin{aligned} & \text { SMT8 } \\ & \text { SGT8 } \end{aligned}$

CONTENTS

SOME TECHNICAL REMINDERS 6 to 7
INTERFACE RELAYS to 9
-SLA / SLD / SPA / SPD 8
-XK - DIN-rail mounting 9
PCB RELAYS 10 to 11
-SKA / SKB / SKL 10
-SKH - with integrated heatsink 11
-SN8 - ultra-miniature and compact package 11
-SHT - three-phase solid state relays 11
SINGLE PHASE SOLID STATE RELAYS 12 to 23
-SO7 - okpac® range - random 13
-SO8 - okpac® range - zero-cross - for most types of loads 13
-SO9 - okpac® range - zero-cross - for resistive loads AC-51 14
-SOL - flatpac® range - low profile 14
-SON - EMC optimized 14
-SOP - Starting transformer 15
-SOR - with removable input connector - spring terminals 15
-SC7 / SC8 / SC9 - Previous generation 15
-SA / SAL / SAM - celpac® range - with screw connection on inputs 16-17-SU / SUL / SUM - celpac® range - with pluggable connector on inputs 18-ESUC - current monitoring module19
-ECOM - temperature controller, current monitorand communication interface19
-SILD / SOD / SOI - power SSRs with diagnostics 20-21
-SF - miniatures relays - with FASTON or PCB terminals 22
-SCF - for resistive loads AC-51 - with FASTON terminals 22
-SCFL - EMC optimized - with FASTON terminals 22
-SP7/SP8 - for most types of loads - with FASTON terminals 23
-SCQ - four-leg solid state relays 23
-ST6 - flashing relays 23
TWO-PHASE SOLID STATE RELAYS 24 to 25
-SOB5 - with FASTON terminals 24
-SOB6 - double input with connector CE100F ITWPANCON typeor similar24
-SOB7 - random 24
-SOB8 / SOB9 - zero-cross 25
-SOBR - with "push-in" style spring power connectors 25
-Accessories for SOB - connectors 25
THREE-PHASE SOLID STATE RELAYS 26 to 28
-SMB - sightpac® 45mm - 2 leg three-phase SSRs 27
-SMT - sightpac® 45 mm 27
-SGB - cel3pac® - 2 leg three-phase SSRs 27
-SGT - cel3pac® 28
SOLID STATE RELAYS FOR MOTOR CONTROL 29 to 30
-SMR / SG9 / SV9 / SW9 - AC reversing switches 29
-XKRD / SGRD - DC reversing switches 29
-SYMC - AC single phase softstarter 30
-SMCV/SMCW - AC three-phase softstarter 30
CONTROLLERS 31 to 35
-Which control mode to choose? 31
-SG4 / SO4 / SIL4 / SIM4 - phase angle controllers 32-33
-SO3 - burst control mode 33
-Multizones power controller 33
-SG5 - full wave pulse controllers 34
-SWG5 - single phase power controllers 34
-SWG8 - three-phase power controllers 34
-SGTA / SVTA - three-phase proportional controllers 35
DC SOLID STATE RELAYS 36 to 37
-MOSFET Technology 36
-BIPOLAR Technology 37
-IGBT Technology 37
HEATSINKS \& ACCESSORIES 38

SOLID STATE RELAYS

WHAT IS A SOLID STATE RELAY / CONTACTOR?

Solid state relays are switching devices made using electronic components. We use the word "relays" as an analogy. An electromechanical relay is an electrical switch that is typically operated by using electromagnetism to operate a mechanical switching mechanism. "Solid state" refers to the fact that these devices do not have any moving parts.

A solid state relay switches power (AC or DC) to the load circuitry and provides electrical insulation between the control circuit and the load circuit. This technology competes with or is an addition to electromechanical relays and other switching technologies such as relays and mercury switches.
A solid state relay consists of:

ADVANTAGES OF SOLID STATE SWITCHING

LONG SERVICE LIFE: SSRs do not have any moving mechanical parts so they are not subject to wear and tear or deformation. When used correctly, a solid state relay has a service life that is 200 times longer than that of an electromechanical relay (EMR).

VERY LOW ENERGY CONSUMPTION: a low drive power makes it possible for the solid state contactors and relays to switch strong power loads.

SILENT OPERATION: this technology does not generate acoustic noise while the outputs are changing state. This is a very important advantage when it comes to domestic and medical uses.

SHOCK AND VIBRATION RESISTANCE: No risk of accidental switching with solid state technology.

VERY HIGH SWITCHING FREQUENCY.
for very accurate adjustment
(temperature, etc.)

OTHER TYPES OF CONTROLS (specific choice
of switching time) and possible diagnostic features.

ZERO-CROSS RELAY OR RANDOM RELAY?

For ZERO VOLTAGE CONTROL (OR ZERO CROSS RELAY), power switching only takes place at the beginning of the alternation after the control has been applied. In fact, switching the power component only takes place at close to zero volts.
For resistive or capacitive loads, it is preferable to use zero cross relays which can limit the di/dt, disturbances on the network and increase the service life of the load and the relay.

For INSTANTANEOUS CONTROL (OR RANDOM RELAYS), power switching takes place as soon as the control voltage has been applied (turn-on time less than $100 \mu \mathrm{~s}$). This type of control is used for all INDUCTIVE loads where the phase shift between voltage and current can cause problems with zerocrossing relays.
It is also used in applications where precise control of power to the load is required (phase-control applications).

REMINDERS : Zero-cross for all loads / heavy duty loads: SO8, SA8, SMT8, ...
Zero-cross for standard industrial loads / resistive loads: SO9, SUL9, SGT9, ... Random: SO7, SUL7, SGT7, ...

SOLID STATE RELAYS

THYRISTOR RATING VS SWITCHING CURRENT

Thyristors are used as the switching components in solid state relays for alternating currents. The ratings of our power components are specified in this catalog. These products must be mounted on heatsinks in order to reach nominal performance. "Thyristor rating", which is an indication of the size of the power component, must not be confused with "switchable current" which depends on how the relay or contactor has been built and how it is used. To correlate the switchable current with the relay and your application, refer
to the tables and thermal curves in our data sheets for products that are not equipped with heatsinks as standard.

Our solid state relays are fitted with back-to-back thyristors and use 4th generation TMS² technology with a very long service life compared to the majority of products on the market (application note available on request).

VOLTAGE PROTECTION

Strong dv/dts may appear on the solid state relay terminals. These can also be generated by mains interference and by the zero cross current turn-off on inductive load. In relays adapted to most loads, celduc®relais uses components with a high level of immunity and sometimes an RC protection network.

Overvoltages can also occur in the power supply and may cause the solid state relay to turn on, even without control. To solve this problem, celduc® uses 1200 V or even 1600 V components. In some ranges, it includes a surge arrestor, also known as a varistor or a
VDR (Voltage Dependent Resistor), placed on the solid state relay terminals on the socket side. For resistive load relays, celduc® relais can also supply a surge protector (TVS (transient-voltage-suppression) diodes on triggers) which closes the relay in the event of an overvoltage to protect it.

CURRENT PROTECTION

\rightarrow USING A FUSE: to protect the solid state relays against load short circuits, fuses must be used, particularly fast-acting fuses for small ratings. The $I^{2} t$ value of the fuse must be less than half of the $I^{2} t$ value of the relay. \rightarrow USING A CIRCUIT BREAKER: this method of protection can be adapted to solid state relays with a $1^{2} \mathrm{t}$ value > $5000 \mathrm{~A}^{2} \mathrm{~s}$.
(technical note on request).

RELAY OVERHEATING/HEATSINK

Solid state relays must cool down sufficiently so that the junction temperature (at the core of the power element) does not exceed the specified values: typically $125^{\circ} \mathrm{C}$ or $150^{\circ} \mathrm{C}$ (this value depends on the power components).

Cooling will prevent it from reaching heatsink temperatures (parts that can be touched) that are too high (90 or $100^{\circ} \mathrm{C}$). To select the appropriate heatsink for your needs, use a calculation or refer to the graphs provided by celduc $®$ relais in the technical data sheets available on this website www.e-catalogue.celduc-relais.com

INTERFACE RELAYS

SLIM
\rightarrow Miniature size

SLA/SLD solid state relays are 100% compatible with 5 mm wide electromechanical relays. They can be soldered directly on to PCBs or plugged into all types of DIN rail standard bases. These relays can switch all types of loads and they can withstand significant current surges from loads in electrovalves, motors, contactor coils, LEDs, etc. The switching power for SLA relays is $2 \mathrm{~A} / 280 \mathrm{VAC}$ and $2.5 \mathrm{~A} / 60 \mathrm{VDC}$ or 4A/24VDC for SLD relays.

	Product reference	Switching current	Switching voltage	Control voltage	Protec. / Specifications
-	SLA03220	2 A	12-280VAC	18-32VDC	RC
4	SLA03220L	2 A	12-280VAC	18-32VDC	RC - Very low leakage current model
	SLD01205	4A	0-32VDC	$3-10 V D C$	
	SLD01210	2.5 A	0-60VDC	3-10VDC	
¢	SLD02205	4A	0-32VDC	7-20VDC	Transil
	SLD03205	4A	$0-32 \mathrm{VDC}$	18-32VDC	
	SLD03210	2.5 A	0-60VDC	18-32VDC	

Other miniature solid state relay options are available on request.

ACCESSORY

Product
reference
ESD01000
Specifications
base for an SLA/SLD relay/module

- Dim. $28 \times 5 \times 15 \mathrm{~mm}$ (1.10 x $0.20 \times 0.59 \mathrm{in}$)

SP-ST
\rightarrow Standard size

	Product reference	Switching current	Switching voltage	Control voltage	Protec.
4	SPA01420	4A	12-275VAC	4-16VDC	VDR
	SPA07420	4A	12-275VAC	12-30VDC / 15-30VAC	
	STA07220	2 A	12-275VAC	12-30VDC / 15-30VAC	
O	SPD03505	5A	0-30VDC	12-30VDC	Transil
	SPD07505	5A	0-30VDC	12-30VDC / 15-30VAC	
	STD03205	2.5 A	0-30VDC	12-30VDC	
	STD03505	5A	0-30VDC	12-30VDC	
	STD07205	2.5 A	0-30VDC	12-30VDC / 15-30VAC	

On request, our STD and SPD modules can be modified with a higher output voltage (100VDC).
Other control voltages are available on request.

SPA / SPD

- Dim. $29 \times 12.7 \times 25.4 \mathrm{~mm}$ $(1.14 \times 0.5 \times 0.94 \mathrm{in})$

STA / STD

- Dim. $29 \times 12.7 \times 15.7 \mathrm{~mm}$ $(1.14 \times 0.47 \times 0.59 \mathrm{in})$

Product
reference
ESD05000

SP/ST relay base for a DIN rail

XK
\rightarrow DIN-rail mounting

Interface relays to control loads such as resistors, LEDS, electrovalves, transformers and power contactor coils. They can also be supplied as dedicated motor control variants with 2 and 3 -phase switching and motor rotation reversal.
They are DIN-rail mounted and fitted with LEDs.

	Product reference	Switching current	Switching voltage	Control voltage	Protec.	Specifications
	XKA20420	5 A	12-275VAC	6-30VDC	VDR	
	XKA20420D	5A	12-275VAC	6-30VDC	VDR	
	XKA20420R	5A	12-275VAC	6-30VDC	VDR	
0	XKA70420	5A	12-275VAC	15-30VAC/DC	VDR	1 pole AC zero-cross output
<	XKA70440	5A	12-440VAC	12-30VAC/8.5-30VDC	VDR	
	XKA90440	5A	12-440VAC	150-240VAC/DC	VDR	
	XKH20120	10A	12-280VAC	10-32VDC		
	XKA20421	5A	12-275VAC	$5-30 \mathrm{VDC}$	VDR	1 pole AC random output
	XKD10120	1A	2-220VDC	5-30VDC	diode	
	XKD10306	3A	2-60VDC	$5-30 \mathrm{VDC}$	diode	
0	XKD11306D	3A	2-60VDC	$5-30 \mathrm{VDC}$	diode	1 pole DC output
-	XKD70306	3A	2-60VDC	10-30VAC/DC	diode	
	XKD90306	3A	2-60VDC	$90-240 \mathrm{VAC}$	diode	
	XKLD31006	10A	12-36VDC	10-30VDC	diode	DC output - MOSFET technology

Suffix D: removable terminals.
Suffix R: removable spring terminals.

XKA/XKD

- Dim. $12.2 \times 76.4 \times 53 \mathrm{~mm}$ $(0.47 \times 2.99 \times 2.09 \mathrm{in})$ or
- Dim. $17.2 \times 76.4 \times 53 \mathrm{~mm}$ ($0.67 \times 2.99 \times 2.09 \mathrm{in}$) depends on models

XKH

- Dim. $25 \times 76.4 \times 65 \mathrm{~mm}$ ($0.98 \times 2.99 \times 2.56 \mathrm{in}$) with built-in heatsink
\rightarrow Diagnostic status output (volt-free)
\rightarrow Control visualization via a green LED
\rightarrow Output DC visualization via a red LED
\rightarrow Built-in clamping voltage
\rightarrow Built-in free wheel diode
\rightarrow This product also includes a fuse on board to protect the installation.

XKLD0020 includes all the built-in protective devices and is designed for inductive loads with high switching frequencies :

	Product reference	Switching current	Switching voltage	Control voltage	Protec.

- Dim. $36 \times 78 \times 61 \mathrm{~mm}$
$(1.42 \times 3.07 \times 2.40 \mathrm{in})$

Product reference	Switching current	Switching voltage	Control voltage	Protec.	Specifications
XKM22440	5AC-51 / 2.5AC-53	24-460VAC	15-40VDC	VDR	2 poles motor switching control
XKR24440	5AC-51 / 2.5AC-53	24-460VAC	15-40VDC	VDR	AC motor change-over control
XKRD30506	5A-DC	7-36VDC	7-30VDC	diode	DC motor change-over control

This ready-to-use, DIN-rail mounted XKRD30506 module consists of four solid state relays. It is wired as an inverter which can be used to change the direction of a DC motor (100W @ 24Vdc).

XKR/XKRD

- Dim. $58.2 \times 76.4 \times 53 \mathrm{~mm}$
$(2.28 \times 2.99 \times 2.09 \mathrm{in})$

RELAYS FOR PRINTED CIRCUITS

SKA SKB

The printed circuit SK range is available in different models: SKA/SKB (AC output) or SKD/SKLD (DC output).
\rightarrow SKA can switch currents up to 5A, switch voltages of 230 or 400VAC and it has built-in voltage protection. This range is ideal for motor control applications, electrovalves and resistive loads.
\rightarrow SKB can switch currents up to 5 A , switch voltages of 230 or 400 VAC and is only used for controlling resistive loads.

| Product
 reference | Current | Switching
 voltage | Control
 voltage | LED | I^{2} t | Protec. | Specifications |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SK541101 | $2.5 A$ | $24-280 V A C$ | $3-30 V D C$ | no | $50 A^{2} s$ | - | AC zero-cross output / |
| normaly closed | | | | | | | |$|$

- Dim. $43.2 \times 10.2 \times 25.4 \mathrm{~mm}$ $(1.69 \times 0.39 \times 0.98 \mathrm{in})$

The SKL range use TMS^{2} technology which reduces thermal stress and improves product service life. The power components range from 16A to 75A. Ideal for motor or lighting control, this range can withstand significant inrush currents ($1^{2} \mathrm{t}$ up to $5000 \mathrm{~A}^{2} \mathrm{~s}$). It can also be used for controlling heating elements. Option of short circuit protection using circuit breakers.

Product reference	Max. current with heatsink	Thyristor rating	Switching voltage	Control voltage	$1^{2} \mathrm{t}$	Specifications
SKL10120	16A	16A	12-280VAC	4-14VDC	$128 A^{2} \mathrm{~S}$	$\begin{aligned} & \text { AC } \\ & \text { zero-cross } \\ & \text { output } \end{aligned}$
SKL10220	21A	25A	12-280VAC	4-14VDC	$312 A^{2} \mathrm{~S}$	
SKL10240	22A	25A	24-600VAC	4-14VDC	$450 A^{2} s$	
SKL10260	22A	25A	24-690VAC	4-14VDC	$1150 A^{2} \mathrm{~s}$	
SKL10540	27A	50A	24-600VAC	4-14VDC	$1800 A^{2} \mathrm{~s}$	
SKL10560	27A	50A	24-690VAC	4-14VDC	$1800 A^{2} \mathrm{~s}$	
SKL20120	16A	16A	12-280VAC	8-32VDC	$128 A^{2} \mathrm{~S}$	
SKL20220	21A	25A	12-280VAC	8-32VDC	$312 A^{2} \mathrm{~s}$	
SKL20240	22A	25A	24-600VAC	8-32VDC	$450 A^{2} \mathrm{~s}$	
SKL20740	30A	75A	24-600VAC	8-32VDC	$5000 \mathrm{~A}^{2} \mathrm{~s}$	
SKL10521	27A	50A	12-280VAC	3-14VDC	$2450 A^{2} S^{-}$	AC random
SKL20241	22A	25A	24-600VAC	8-32VDC	$450 \mathrm{~A}^{2} \mathrm{~s}$	output

- $\operatorname{Dim} .43,4 \times 6,3 \times 24,5 \mathrm{~mm}$ $(1.69 \times 0.24 \times 0.94 \mathrm{in})$

See DC output models on pages 36-37

RELAYS FOR PRINTED CIRCUITS

SKH

SKH is a "ready to use" range of solid state relays for printed circuits.
Each relay has a built-in heatsink.

Product reference	Output current	Output current with ventilation	Switching voltage	Control voltage	$1^{2} \mathrm{t}$
SKH10120	10A @ 20 ${ }^{\circ} \mathrm{C}$	16A	12-280VAC	4-14VDC	128A ${ }^{2} \mathrm{~S}$
SKH10240	10A @ 25 ${ }^{\circ} \mathrm{C}$	25A	24-600VAC	4-14VDC	$450 A^{2} \mathrm{~S}$
SKH20120	10A @ 20 ${ }^{\circ} \mathrm{C}$	16A	12-280VAC	8-32VDC	$128 A^{2} \mathrm{~S}$
SKH20240	10A @ 25 ${ }^{\circ} \mathrm{C}$	25A	24-600VAC	8-32VDC	$450 A^{2} \mathrm{~S}$

Other models are available on request

- Dim. $43.6 \times 22 \times 35.7 \mathrm{~mm}$
$(1.69 \times 0.87 \times 1.38$ in)

SN8

This relay is designed for printed circuits and, when fitted with a suitable heatsink, can control heavy loads in an ultra-miniature, physically compact package. \qquad

- Dim. $35.05 \times 12.7 \times 28.32 \mathrm{~mm}$ $(1.38 \times 0.47 \times 1.10 \mathrm{in})$

SHT

Three-phase solid state relay in a single low profile package for printed circuits.
This relay is designed for PCB applications. Complete with a heatsink, it provides control of medium power in three-phase networks.

Product reference	Current	Switching voltage	Control voltage	$1^{2 t}$
SHT842300	$3 \times 25 A$	$24-280 V A C$	$10-30 V D C$	$260 A^{2} s$

Other models are available on request

- Dim. $81.28 \times 8.26 \times 27.69 \mathrm{~mm}$
$(3.19 \times 0.31 \times 1.06 \mathrm{in})$

APPLICATIONS

Electrovalves, LEDs, contactors $\frac{\mathrm{ld}=1.4 \times \ln }{\text { SKA }}$

$$
\frac{\mathrm{Id}=1.4 \mathrm{xln}}{\mathrm{SKB} / \mathrm{SKL}}
$$

SINGLE PHASE SOLID STATE RELAYS

All our solid state relays are fitted with back-to-back thyristors and use fourth generation TMS² technology with a very long service life compared to the majority of products on the market (application note available on request).

0 0102 ${ }^{\circledR}$ Innovation Performance and Design!

\rightarrow Multiple, simple and fast connections
\rightarrow Removable IP20
\rightarrow A single screwdriver for both the output and input
\rightarrow Attached to a metal baseplate, not plastic
\rightarrow Removable control terminals
\rightarrow SSR, mains and load status diagnostics.
\rightarrow Output voltage from 24 to 690 VAC (600V-1200V-1600V peak)
\rightarrow Very low zero-crossing level
\rightarrow Large range of regulated AC and DC input voltage
\rightarrow LEDs
\rightarrow EMC compliant for the industrial environment
\rightarrow UL/cUL, VDE (EN60950), IEC/EN60947-4-3, CE marking
\rightarrow Itsm up to 2 000A and $I^{2} t>20000 A^{2} s$
\rightarrow Can be associated with wircuit breaker for protection.

MULTIPLE, SIMPLE AND FAST CONNECTIONS

CONNECTION

 on the power side

Direct connection by wire or end fitting $2 \times 6 \mathrm{~mm}^{2}$ (AWG10) fine strand i.e. 32A
$2 \times 10 \mathrm{~mm}^{2}$ (AWG8) solid i.e. 50A

With tubular cable lugs
Up to $50 \mathrm{~mm}^{2}$ (AWG1) with or without adjustment i.e. 150A

Screw with lock washers
Improved shock and vibration resistance

CONNECTION on the control side

Using screws (SO7 / SO8 / SO9 / SOL)

Using pluggable spring connector technology (SOR)

REMINDER
SO7 random
SO8 ZERO-CROSS FOR ALL KINDS OF LOADS / HEAVY DUTY LOADS
SO9 zero-cross for standard industrial loads / resistive loads

SINGLE PHASE SOLID STATE RELAYS

okpac ${ }^{\circ}$

SO7
\rightarrow Random

celduc $®$ supplies "ready to use" solutions with built-in heatsinks.

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	12 t	Protec.
S0745090	50A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	$2800 A^{2} \mathrm{~S}$	RC-VDR
S0763090	35A	24-510VAC	1200 V	3.5-32VDC	$1250 A^{2} \mathrm{~S}$	RC-VDR
S0765090	50A	24-510VAC	1200 V	3.5-32VDC	$2800 A^{2} \mathrm{~s}$	RC-VDR
S0767090	75A	24-510VAC	1200 V	$3.5-32 \mathrm{VDC}$	$7200 A^{2} \mathrm{~s}$	RC-VDR
S0768090	95A	24-510VAC	1200 V	3.5-32VDC	$16200 A^{2} \mathrm{~S}$	RC-VDR
S0769090	125A	24-510VAC	1200V	$3.5-32 \mathrm{VDC}$	$24000 A^{2} \mathrm{~S}$	RC-VDR
S0789060	125A	24-690VAC	1600 V	3.5-32VDC	$22000 A^{2} \mathrm{~S}$	-

All these products must be mounted on heatsinks in order to reach nominal performance.

SO8

\rightarrow Zero-cross for all loads

Typical applications: AC-53 motor loads and strong inductive loads.
The SO7 range provides instant switching (asynchronous/random) with voltage protection on input (Transil) and output (RC and VDR) depending on the model in question.

- Dim. $45 \times 58.5 \times 30 \mathrm{~mm}$ $(1.77 \times 2.28 \times 1.18 \mathrm{in})$

The SO8 range is designed for most types of loads / heavy duty loads
\rightarrow Zero cross with low zero crossing level ($<12 \mathrm{~V}$)
\rightarrow Voltage protection on input (Transil) and output (VDR) with very high immunity in accordance with standards IEC/EN61000-4-4 and IEC/EN610004-5, depending on the model in question
\rightarrow Control current $<13 \mathrm{~mA}$ for the entire voltage range at any operating temperature.

	Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1{ }^{2} \mathrm{t}$	Protec.
	S0842074	25A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	$600 A^{2}$ S	VDR
	S0842974	25A	12-275VAC	600 V	20-265VAC/DC	$600 A^{2} \mathrm{~s}$	VDR
	S0843070	35A	12-275VAC	600 V	3-32VDC	$1250 A^{2} \mathrm{~s}$	VDR
	S0843970	35A	12-275VAC	600 V	20-265VAC/DC	$1250 A^{2} \mathrm{~s}$	VDR
	S0845070	50A	12-275VAC	600 V	3-32VDC	$2800 A^{2} \mathrm{~S}$	VDR
	S0845970	50A	12-275VAC	600 V	20-265VAC/DC	$2800 \mathrm{~A}^{2} \mathrm{~s}$	VDR
	S0848070	95A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	$16200 A^{2} \mathrm{~s}$	VDR
	S0849070	125A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	$22000 A^{2} \mathrm{~s}$	VDR
	S0863070	35A	24-510VAC	1200V	3.5-32VDC	$1250 \mathrm{~A}^{2} \mathrm{~s}$	VDR
	S0863970	35A	24-510VAC	1200V	20-265VAC/DC	$1250 A^{2} \mathrm{~s}$	VDR
	S0865070	50A	24-510VAC	1200V	3.5-32VDC	$2800 A^{2} \mathrm{~S}$	VDR
	S0865970	50A	24-510VAC	1200V	20-265VAC/DC	$2800 A^{2} \mathrm{~S}$	VDR
	S0867070	75A	24-510VAC	1200V	3.5-32VDC	$7200 A^{2} \mathrm{~s}$	VDR
	S0867970	75A	24-510VAC	1200V	20-265VAC/DC	$7200 \mathrm{~A}^{2} \mathrm{~S}$	VDR
	S0868070	95A	24-510VAC	1200V	3.5-32VDC	$16200 A^{2} \mathrm{~s}$	VDR
	S0868970	95A	24-510VAC	1200V	20-265VAC/DC	$16200 A^{2} \mathrm{~s}$	VDR
	S0869070	125A	24-510VAC	1200V	$3.5-32 \mathrm{VDC}$	$22000 A^{2} \mathrm{~S}$	VDR
	S0869970	125A	24-510VAC	1200V	20-265VAC/DC	$22000 A^{2} \mathrm{~S}$	VDR
	S0885060	50A	24-690VAC	1600V	3.5-32VDC	$2800 \mathrm{~A}^{2} \mathrm{~S}$	-
$\frac{0}{5} \geqslant$	S0885960	50A	24-690VAC	1600 V	20-265VAC/DC	$2800 \mathrm{~A}^{2} \mathrm{~S}$	-
오굮	S0887060	75A	24-690VAC	1600 V	3.5-32VDC	$7200 \mathrm{~A}^{2} \mathrm{~s}$	-
픙	S0888060	95A	24-690VAC	1600V	$3.5-32 \mathrm{VDC}$	$16200 A^{2} \mathrm{~s}$	-
	S0889060	125A	24-690VAC	1600 V	3.5-32VDC	$22000 A^{2} \mathrm{~s}$	-

- Dim. $45 \times 58.5 \times 30 \mathrm{~mm}$ $(1.77 \times 2.28 \times 1.18 \mathrm{in})$

All these products must be mounted on heatsinks in order to reach nominal performance.
relais

SINGLE PHASE SOLID STATE RELAYS

SO9

\rightarrow Zero-cross for standard industrial loads Resistive loads (AC-51)

- Dim. $45 \times 58.5 \times 30 \mathrm{~mm}$ $(1.77 \times 2.28 \times 1.18 \mathrm{in})$

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1^{2} \mathrm{t}$	Regulated control current
S0941460	12A	12-280VAC	600 V	$3-32 \mathrm{VDC}$	$128 A^{2} \mathrm{~S}$	yes
S0942460	25A	12-280VAC	600 V	$3-32 \mathrm{VDC}$	$600 A^{2} \mathrm{~s}$	yes
S0942470	25A	12-280VAC	600 V	$3-32 \mathrm{VDC}$	$600 A^{2} \mathrm{~s}$	yes
S0942860	25A	12-280VAC	600 V	15-32VAC/10-30VDC	$600 A^{2} \mathrm{~s}$	no
S0942960	25A	12-280VAC	600 V	185-265VAC/DC	$600 A^{2} \mathrm{~S}$	no
S0943460	40A	12-280VAC	600 V	$3-32 \mathrm{VDC}$	$1250 A^{2} \mathrm{~S}$	yes
S0945460	60A	12-280VAC	600 V	$3-32 \mathrm{VDC}$	$2800 A^{2} \mathrm{~S}$	yes
S096346H	35A	24-600VAC	1200V	$3.5-32 \mathrm{VDC}$	$882 A^{2} \mathrm{~S}$	yes
S096386H	35A	24-600VAC	1200V	15-32VAC	$882 A^{2} \mathrm{~S}$	yes
S0963460	40A	24-600VAC	1200 V	$3.5-32 \mathrm{VDC}$	$1250 A^{2} \mathrm{~S}$	yes
S096546H	50A	24-600VAC	1200V	$3.5-32 \mathrm{VDC}$	$1680 A^{2} \mathrm{~S}$	yes
S096546T	50A	24-600VAC	1200V	$3.5-32 \mathrm{VDC}$	$2800 A^{2} \mathrm{~S}$	yes
S0965460	60A	24-600VAC	1200V	$3.5-32 \mathrm{VDC}$	$2800 A^{2} \mathrm{~s}$	yes
S0967460	90A	24-600VAC	1200V	$3.5-32 \mathrm{VDC}$	$7200 A^{2} \mathrm{~s}$	yes
S0967860	90A	24-600VAC	1200V	15-32VAC	$7200 A^{2} \mathrm{~s}$	no
S0967960	90A	24-600VAC	1200 V	20-265VAC/DC	$7200 A^{2} \mathrm{~s}$	yes
S0968470	95A	24-510VAC	950 V	3.5-32VDC	11 250A ${ }^{2} \mathrm{~s}$	yes
S096846T	95A	24-600VAC	1200V	3.5-32VDC	11 250A ${ }^{2} \mathrm{~S}$	yes

Specifications

Control current < 13 mA Control current <13mA VDR
with simplified input with simplified input Control current $<13 \mathrm{~mA}$ Control current <13mA Control current <13mA Control current <13mA Control current <13mA Control current < 13 mA Thermal Pad mounted Control current <13mA Control current <13mA with simplified input Control current <13mA Control current < 13 mA Thermal Pad mounted

All these products must be mounted on heatsinks in order to reach nominal performance.

SOL flatpac ${ }^{\circledR}$

 \rightarrow Low profile ($\mathrm{h}=16,3 \mathrm{~mm}$)| Product reference | Thyristor rating | Switching voltage | Peak voltage | Control voltage |
| :---: | :---: | :---: | :---: | :---: |
| SOL942460 | 25 A | $12-280 \mathrm{VAC}$ | 600 V | $3-32 \mathrm{VDC}$ |
| SOL942960 | 25 A | $12-280 \mathrm{VAC}$ | 600 V | $185-265 \mathrm{VAC} / \mathrm{DC}$ |
| SOL965460 | 50 A | $24-600 \mathrm{VAC}$ | 1200 V | $300 \mathrm{~A}^{2} \mathrm{~S}$ |
| | | | | $300 \mathrm{~A}^{2} \mathrm{~S}$ |
| | | | | |

All these products must be mounted on heatsinks in order to reach nominal performance.
These flatpac® relays are mainly designed for applications where a PCB is usually installed on the relay's control side. This product can also be used for applications where the wires are on the power side.

Dim. $45 \times 58.5 \times 16.3 \mathrm{~mm}$ $(1.77 \times 2.28 \times 0.63 \mathrm{in})$

SON

\rightarrow EMC optimized
(low electromagnetic emission - low RFI)

These relays are designed for use in applications where low electromagnetic emission is essential: household and electrical appliances, information technology and medical equipment. The range complies with the EN 50081-1 standard (Electromagnetic compatibility. Generic emission standard. Residential, commercial and light industry).

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1^{2} t$
SON845040	50 A	$40-260 \mathrm{VAC}$	600 V	$6-32 \mathrm{VDC}$	$2800 A^{2} \mathrm{~s}$
SON865040	50 A	$50-480 \mathrm{VAC}$	1200 V	$6-32 \mathrm{VDC}$	$2800 \mathrm{~A}^{2} \mathrm{~s}$
SON867040	75 A	$50-480 \mathrm{VAC}$	1200 V	$6-32 \mathrm{VDC}$	$7200 \mathrm{~A}^{2} \mathrm{~s}$

All these products must be mounted on heatsinks in order to reach nominal performance.

- Dim. $45 \times 58.5 \times 30 \mathrm{~mm}$
$(1.77 \times 2.28 \times 1.18 \mathrm{in})$

SINGLE PHASE SOLID STATE RELAYS

\rightarrow Starting transformer

NEW

SOP relays are used for primary transformer inrush currents and all saturable inductive loads in order to avoid magnetizing current peaks (application note available on request).

Product	Thyristor
reference	rating SOP65070
SOA	
SOP69070	125 A
All these products must	

\rightarrow Pluggable connectors

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1^{2} \mathrm{t}$
SOR842074	25 A	$12-275 \mathrm{VAC}$	600 V	$3-32 \mathrm{VDC}$	$600 \mathrm{~A}^{2} \mathrm{~s}$
SOR863070	35 A	$24-510 V A C$	1200 V	$3.5-32 \mathrm{VDC}$	$1250 \mathrm{~A}^{2} \mathrm{~s}$
SOR865070	50 A	$24-510 V A C$	1200 V	$3.5-32 \mathrm{VDC}$	$2800 \mathrm{~A}^{2} \mathrm{~s}$
SOR867070	75 A	$24-510 V A C$	1200 V	$3.5-32 \mathrm{VDC}$	$7200 \mathrm{~A}^{2} \mathrm{~s}$

All these products must be mounted on heatsinks in order to reach nominal performance.

Model with pluggable input connectors (spring connectors).
Designed for most types of loads. \qquad
Dim. $45 \times 58.5 \times 30 \mathrm{~mm}$

- $\operatorname{Dim} .45 \times 58.5 \times 30 \mathrm{~mm}$
$(1.77 \times 2.28 \times 1.18 \mathrm{in})$
\qquad

\rightarrow Previous generation

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1^{2} \mathrm{t}$	Specifications	
SC741110	12A	12-280VAC	600 V	$3-30 \mathrm{VDC}$	$72 A^{2} \mathrm{~S}$		\%er
SC762110	25A	24-520VAC	1200 V	4-30VDC	$265 A^{2} \mathrm{~s}$	Random	e,
SC764110	50A	24-520VAC	1200 V	4-30VDC	$1500 A^{2} \mathrm{~S}$	Random	-
SC769110	125A	24-520VAC	1200 V	4-30VDC	$20000 A^{2} \mathrm{~S}$		
SC841110	12A	12-280VAC	600 V	4-30VDC	$72 \mathrm{~A}^{2} \mathrm{~s}$		
SC841910	12A	12-280VAC	600 V	90-240VAC/DC	$72 A^{2} \mathrm{~s}$		
SC842110	25A	12-280VAC	600 V	4-30VDC	$312 A^{2} \mathrm{~S}$		- Dim. $44.5 \times 58.2 \times 27 \mathrm{~mm}$
SC844110	40A	12-280VAC	600 V	4-30VDC	$612 A^{2} \mathrm{~S}$		$(1.73 \times 2.28 \times 1.06 \mathrm{in})$
SC862110	25A	24-520VAC	1200 V	$5-30 \mathrm{VDC}$	$265 A^{2} \mathrm{~S}$	Zero-cross /	
SC864110	50A	24-520VAC	1200 V	5-30VDC	$1500 \mathrm{~A}^{2} \mathrm{~s}$	most types of loads	
SC864810	50A	24-520VAC	1200 V	17-80VAC/DC	$1500 A^{2} \mathrm{~S}$		
SC864910	50A	24-520VAC	1200 V	90-240VAC/DC	$1500 A^{2} \mathrm{~S}$		
SC867110	75A	24-520VAC	1200 V	$5-30 \mathrm{VDC}$	$5000 A^{2} \mathrm{~S}$		
SC869110	125A	24-520VAC	1200 V	$5-30 \mathrm{VDC}$	$20000 A^{2} \mathrm{~S}$		
SC942110	25A	12-280VAC	600 V	4-30VDC	$312 A^{2} \mathrm{~S}$	Zero-cross /	
SC965160	50A	24-600VAC	1200 V	$5-30 \mathrm{VDC}$	$1500 A^{2} \mathrm{~S}$	resistive loads	
SC967100	75A	24-600VAC	1200V	$5-30 \mathrm{VDC}$	$5000 A^{2} \mathrm{~S}$	AC-51	

All these products must be mounted on heatsinks in order to reach nominal performance.

SINGLE PHASE SOLID STATE RELAYS

celpac ${ }^{\text {T }}$

Reliability \& performance

\rightarrow It has the same center-to-center fastening as the celduc SO and SC ranges,
\rightarrow Maximum voltage up to 1600 V (690VRMS), 600VAC and 1200VAC as standard,
\rightarrow Thyristor rating up to 75A,
Large input range : 3-32VDC with regulated current models,
\rightarrow Models available with AC,
\rightarrow Yellow input status LED,
\rightarrow Over-voltage protection on the input,
\rightarrow New generation of TMS ${ }^{2}$ technology for thyristors for a longer life expectancy,
Quick and easy connections,
$>$ Designed according to European standards
EN60947-4-3 (IEC947-4-3) and
EN60950 (VDE0805 reinforced insulation)
IEC62314-UL-cUL,
\rightarrow IP20 protection with removable flaps (SU range) or cover (SA range),
$>$ Other protection devices available as an option : RC snubber, VDR, self turn-on.

The 22.5 mm wide SSR solution!

A cost-effective and compact solution

With an installation width of only 22.5 mm , our celpac ${ }^{\circledR}$ solid state relays and contacts take up the least possible space, Reduced assembly time, simple wiring,
Reduced maintenance thanks to a very long service life,
A single screwdriver for both the output and input.

REMINDER

SA/SU 8 zero-cross for heavy duty loads
SA/SU 9 ZERO-CROSS FOR RESISTIVE LOADS
SA/SU 7
RANDOM
"READY TO USE" VERSIONS
SA/SU L
22,5MM HEATSINK- 3K/W
SA/SU M
45MM HEATSINK - 2,2K/W

MULTIPLE, SIMPLE AND FAST CONNECTIONS

AS AN OPTION

celduc® relais offers 2 options that can be clipped directly on to the SU/SUL range
SAVE SPACE
REDUCE COSTS
WITH MORE FUNCTIONS

SINGLE PHASE SOLID STATE RELAYS

celpac ${ }^{\text {® }}$

The 22.5 mm wide SSR solution!

Our SA range has a screw-mounted connection on the power side and the control side. Our products include a transparent protective cover and some models are "ready to use" with built-in heatsinks (SAL and SAM versions).

SA

SA8 : designed for heavy duty loads / VDR protection included SA9 : designed for standard industrial loads / resistive loads AC-51 \qquad
\rightarrow For mounting on the heatsink of your choice

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	12 t
SA842070	25A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	$600 A^{2} \mathrm{~s}$
SA941460	12A	12-280VAC	600 V	$3-32 \mathrm{VDC}$	$128 A^{2} \mathrm{~s}$
SA942460	25A	12-280VAC	600 V	$3-32 \mathrm{VDC}$	$450 A^{2} \mathrm{~S}$
SA963460	35A	24-600VAC	1200V	3.5-32VDC	$882 A^{2} \mathrm{~S}$
SA965460	50A	24-600VAC	1200V	3.5-32VDC	$1680 A^{2} \mathrm{~s}$

All these products must be mounted on heatsinks in order to reach nominal performance.

SAL/SAM

 \rightarrow "Ready to use" versionSAx9 : designed for standard industrial loads / AC-51 resistive loads

Product
reference

SAL941460
 SAL942460
 SAL961360
 SAL962360
 SAL963460
 SAL965460

SAM943460 SAM963360 SAM965360

Thyristor rating	Max.swithcing current at $25^{\circ} \mathrm{C}$
12A	12 A
25A	23 A
15A	15 A
25A	23 A
35A	30 A
50A	32 A

Switching
voltage
$12-280$ VAC
$12-280 \mathrm{VAC}$
$24-600 \mathrm{VAC}$
$24-600 \mathrm{VAC}$
$24-600 \mathrm{VAC}$
$24-600 \mathrm{VAC}$

Peak	
voltage	Control
600 V	voltage
600 V	$3-32 \mathrm{VDC}$
1200 V	$3-32 \mathrm{VDC}$
1200 V	$6-32 \mathrm{VDC}$
1200 V	$3.5-32 \mathrm{VDC}$
1200 V	$3.5-32 \mathrm{VDC}$
600 V	$3-32 \mathrm{VDC}$
1200 V	$6-32 \mathrm{VDC}$
1200 V	$6-32 \mathrm{VDC}$

- Dim. $22.5 \times 90 \times 112 \mathrm{~mm}$
- Dim. $45 \times 90 \times 112 \mathrm{~mm}$ $(1.77 \times 3.54 \times 4.41 \mathrm{in})$
$(0.87 \times 3.54 \times 4.41 \mathrm{in})$

Regulated
control current

no
no
yes
yes

- Dim. $22.5 \times 90 \times 42 \mathrm{~mm}$ ($0.87 \times 3.54 \times 1.65 \mathrm{in}$)

SINGLE PHASE

 SOLID STATE RELAYS
celpac ${ }^{\circ}$ G

The 22.5 mm wide SSR solution!

Our entire SU range have pluggable connectors.
Our products also include removable protective shutters and some models are "ready to use" with built-in heatsinks (SUL and SUM versions).

SU

\rightarrow For mounting on the heatsink of your choice

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$12 t$
SU765070	50A	24-510VAC	1200 V	3.5-32VDC	$1680 A^{2} \mathrm{~s}$
SU842070	25A	12-275VAC	600 V	$3-32 \mathrm{VDC}$	$600 A^{2} \mathrm{~s}$
SU842770	25A	12-275VAC	600 V	18-30VAC/DC	$600 A^{2} \mathrm{~s}$
SU842970	25A	12-275VAC	600 V	160-240VAC	$600 A^{2} \mathrm{~s}$
SU865070	50A	24-510VAC	1200 V	$3.5-32 \mathrm{VDC}$	$1680 \mathrm{~A}^{2} \mathrm{~s}$
SU865770	50A	24-510VAC	1200 V	18-30VAC/DC	$1680 A^{2} \mathrm{~s}$
SU865970	50A	24-510VAC	1200 V	160-240VAC	$1680 A^{2} \mathrm{~s}$
SU867070	75A	24-510VAC	1200 V	$3.5-32 \mathrm{VDC}$	$7200 A^{2} \mathrm{~s}$
SU942460	25A	12-280VAC	600 V	$3-32 \mathrm{VDC}$	$600 A^{2} \mathrm{~s}$
SU963460	35A	24-600VAC	1200 V	3.5-32VDC	$882 A^{2} \mathrm{~s}$
SU965460	50A	24-600VAC	1200 V	3.5-32VDC	$1680 A^{2} \mathrm{~s}$
SU967460	75A	24-600VAC	1200 V	$3.5-32 \mathrm{VDC}$	$7200 A^{2}$ s

SU7 : AC-53 motor loads and strong inductive loads. Used in phase angle control systems
SU8 : designed for heavy duty loads / VDR protection included
SU9 : designed for standard industrial loads / AC-51 resistive loads

- Dim. $22.5 \times 90 \times 42 \mathrm{~mm}$
$(0.87 \times 3.54 \times 1.65 \mathrm{in})$

All these products must be mounted on heatsinks in order to reach nominal performance.

SUL/SUM

 \rightarrow "Ready to use" version| Product reference | Thyristor rating | Max.swithcing current at $25^{\circ} \mathrm{C}$ | Switching voltage |
| :---: | :---: | :---: | :---: |
| SUL765070 | 50A | 32A | 24-510VAC |
| SUL842070 | 25A | 23A | 12-275VAC |
| SUL842770 | 25A | 23A | 12-275VAC |
| SUL842970 | 25A | 23A | 12-275VAC |
| SUL865070 | 50A | 32A | 24-510VAC |
| SUL865770 | 50A | 32A | 24-510VAC |
| SUL865970 | 50A | 32A | 24-510VAC |
| SUL867070 | 75A | 35A | 24-510VAC |
| SUL942460 | 25A | 23A | 12-280VAC |
| SUL963460 | 35A | 30A | 24-600VAC |
| SUL965460 | 50A | 32A | 24-600VAC |
| SUL967460 | 75A | 35A | 24-600VAC |
| SUM865070 | 50A | 45A | 24-510VAC |
| SUM867070 | 75A | 45A | 24-510VAC |

SUx7 : AC-53 motor loads and strong inductive loads.
 Used in phase angle control systems

SUx8 : designed for heavy duty loads / VDR protection included
SUx9 : designed for standard industrial loads / AC-51 resistive loads __

Peak voltage	Control voltage	12 t
1200 V	$3.5-32 \mathrm{VDC}$	$1680 A^{2} \mathrm{~S}$
600 V	$3-32 \mathrm{VDC}$	$600 A^{2} \mathrm{~S}$
600 V	18-30VAC/DC	$600 A^{2} \mathrm{~S}$
600 V	160-240VAC	$600 A^{2} \mathrm{~S}$
1200 V	3.5-32VDC	$1680 A^{2} \mathrm{~S}$
1200 V	18-30VAC/DC	$1680 A^{2} \mathrm{~s}$
1200 V	160-240VAC	$1680 A^{2} \mathrm{~s}$
1200 V	3.5-32VDC	$7200 A^{2} \mathrm{~s}$
600 V	$3-32 \mathrm{VDC}$	$600 A^{2} \mathrm{~S}$
1200 V	3.5-32VDC	$882 A^{2} \mathrm{~S}$
1200 V	$3.5-32 \mathrm{VDC}$	$1680 A^{2} \mathrm{~s}$
1200 V	$3.5-32 \mathrm{VDC}$	$7200 A^{2} \mathrm{~s}$
1200 V	3.5-32VDC	$1680 A^{2} \mathrm{~S}$
1200 V	$3.5-32 \mathrm{VDC}$	$7200 A^{2} \mathrm{~s}$

SINGLE PHASE SOLID STATE RELAYS

celpac ${ }_{\text {TG }}$

 The 22.5 mm wide SSR solution! celduc ${ }^{\circledR}$ relais offers 2 options that can be clipped directly on to the SU/SUL/SUM range
SAVE SPACE / REDUCE COSTS / WITH MORE FUNCTIONS

CURRENT MONITORING MODULE

ESUC

To combine with our SU/SUL/SUM

MAKE THE MOST OF YOUR SSR

Diagnostics and control of up to 5 heater loads:
Continuous current monitoring,
Current set point training function via a push-button or external binary input,

2 alarm thresholds (+/-16\%),
Partial load break detection,
Open load detection,
SSR short circuit detection.

WHY CHOOSE THIS OPTION?

[^0]
TEMPERATURE CONTROLLER PID, CURRENT MONITOR AND COMMUNICATION INTERFACE IN ONE UNIT

ECOM0010

To combine with our SU/SUL/SUM

MAKE THE MOST OF YOUR SSR

Temperature controller with :

- PID controller with automatic or manual tuning, - Insulated inputs for J, K, T, E thermocouples, PT100 to come
Auxiliary output for heating, cooling, alarm or to control a 3 phase Solid State Relay, Loop and heater break alarms.
Current monitoring up to 50A with current transformer
RS485/Modbus RTU serial link (others available on request)

Power supply : $24 \mathrm{Vdc}+/-10 \%$

WHY CHOOSE THIS OPTION?

ECOM is the most compact solution available on the market, incorporating the latest measuring and control technology.
\rightarrow By reducing wiring costs and minimizing the size of electrical cabinets, this solution is the answer to your needs.

POWER SSRs WITH DIAGNOSTICS

celduc® relais offers a variety of relay diagnostic solutions.
These relays let the user know the status of the load (resistive load), the relay output and the network.

WHICH SOLUTION TO CHOOSE?

Here are a few examples of our customers' requirements:

REQUIREMENT

- 1 RELAY for 1 heating element
+1 sensing element
- 1 RELAY for 1 heating element
+1 rapid sensing element
+ compact and ready to use solution
SOLUTIONS
\rightarrow SOD
\rightarrow SILD

ADVANTAGES

(for both SOD and SILD)

\rightarrow These relays let the user know the status of the load (connected or not), the relay output (closed or not) and the network (fuse or circuit breaker status) in the power circuit, via an NC (Normally Closed) diagnostic contact.
\rightarrow Volt-free
\rightarrow A single input PLC that can be placed in a series
\rightarrow Easy to use
\rightarrow The diagnostic function does not require an external power supply
\rightarrow Quick reaction time $<100 \mathrm{~ms}$

REQUIREMENT

1 relay for several loads + need for a compact and ready to use solution

SOLUTIONS

\rightarrow ESUC current detection module combined with our SU/SUL solid state relays

ADVANTAGES

\rightarrow Detection of partial load break or current surge (operates with up to 5 identical loads)
\rightarrow Three-phase or possible
 multizone use
\rightarrow Minimal dimensions: only 22.5 mm wide

REQUIREMENT

Connect/disconnect areas with heating :
This solution is ideal for thermoforming machines where the heating surface needs to be adapted to the size of the plastic sheets intended for preheating. Standard diagnostic solid state relays display an error when a heated area is disconnected. This requires a specific and sometimes complex management of the diagnostic signals.

SOLUTIONS
\rightarrow SOI

AVANTAGES

\rightarrow The main function of the SOI range is to switch the load current. It also provides
 information about the presence (or lack thereof) of the output current which must then be interpreted by the user or the system.

REQUIREMENT

Reading the current and alarms via a communication interface

SOLUTIONS

\rightarrow Combined ECOM module with our SU / SUL solid state relays

ADVANTAGES

\rightarrow This product, which has been designed for temperature control (with built-in PID), can also be used to:

- Measure the load current
- Measure the ambient temperature, the process or even the relay or its heatsink (built-in J, K, T, E thermocouple input)
- Create alarms (current, temperature, relay status)
- Adjust the power on the load via a chronoproportional control
\rightarrow It communicates via an RS485 link and a MODBUS RTU protocol.
\rightarrow In order to view the status locally, it has 3 LEDs and a configurable output.

POWER SSRs WITH DIAGNOSTICS

DIAGNOSTIC RELAY

Our power SSRs with diagnostics are housed in celpac units, these include our SILD and okpac® ranges (to mount on heatsinks) and our SOD and SOI ranges.
These relays let the user know the status of the load (resistive load), the relay output and the network via an NC (Normally Closed) diagnostic contact.
The diagnostic function does not require an external power supply (celduc® patent). The contacts of different relays can
also be placed in a series. It is possible to use these relays for diagnostics in a three-phase system, star connection wiring without neutral.
Our SOI range includes a current transformer (CT) and a contact for signaling. This makes it possible to switch the load current by providing information about the presence (or lack thereof) of the output current which must then be interpreted by the user or the system.

Product reference	Thyristor rating	Max.swithcing current at $25^{\circ} \mathrm{C}$	Switching voltage	Peak voltage	Control voltage	$1^{2} \mathrm{t}$
SILD845160	50 A	32 A	$70-280 \mathrm{VAC}$	600 V	$3-32 \mathrm{VDC}$	$1500 \mathrm{~A}^{2} \mathrm{~s}$
SILD865170	50 A	32 A	$150-510 \mathrm{VAC}$	1200 V	$3.5-32 \mathrm{VDC}$	$1500 A^{2} \mathrm{~s}$
SILD867170	75 A	35 A	$150-510 \mathrm{VAC}$	1200 V	$3.5-32 \mathrm{VDC}$	$5000 A^{2} \mathrm{~s}$

- Dim. $22.5 \times 80 \times 116 \mathrm{~mm}$
$(0.87 \times 3.15 \times 4.57 \mathrm{in})$

SOD

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1^{2} \mathrm{t}$
SOD843180	35A	50-265VAC	600 V	7-30VDC	$1250 A^{2} \mathrm{~s}$
SOD845180	50A	50-265VAC	600 V	7-30VDC	$2800 A^{2} \mathrm{~s}$
SOD849180	125A	50-265VAC	600 V	7-30VDC	$22000 A^{2} \mathrm{~s}$
S0D865180	50A	150-510VAC	1200 V	7-30VDC	$2800 A^{2} \mathrm{~s}$
SOD867180	75A	150-510VAC	1200 V	7-30VDC	$7200 A^{2} \mathrm{~s}$

All these products must be mounted on heatsinks in order to reach nominal performance.

- Dim. $45 \times 58.5 \times 33.6 \mathrm{~mm}$ $(1.77 \times 2.28 \times 1.30 \mathrm{in})$

SOI

NEW

OPERATION: By applying or removing a voltage on the control input, the SOI relay switches or disconnects the current in the load. If the value of the load current is greater than the factory setting threshold, the current transformer included in the SOI will close the contact for signaling. It therefore indicates that a current is flowing in the load, then the user or the system interprets this status.

ADVANTAGES

\rightarrow Reduction of quantity, cost and time of wiring
\rightarrow Elimination of the need to pass the power cables through a current transformer
\rightarrow Elimination of costly analogue inputs on the PLC

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1^{2 t}$
SOI885070	50 A	$24-625 \mathrm{VAC}$	1600 V	$3.5-32 \mathrm{VDC}$	$2800 \mathrm{~A}^{2} \mathrm{~S}$

All these products must be mounted on heatsinks in order to reach nominal performance.

SINGLE PHASE SOLID STATE RELAYS

SSR with "FASTON" terminals

Solid State Relays with "FASTON" terminals are ideal for the food and beverage industry for currents less than 20A.
celduc® relais offers a wide range of single phase products with "FASTON" terminals, and also two-phase (see page 24) and four-leg power SSRs (see SCQ range page 23).

Miniature relays available with "FASTON" terminals or with pins for printed circuits.

Product reference	Thyristor rating	Switching voltage	Control voltage	Specifications
SF541310	10A	12-280VAC	4-30VDC	Zero-cross, "FASTON" terminals
SF542310	10A	12-280VAC	4-30VDC	Zero-cross, PCB terminals
SF546310	25A	12-280VAC	4-30VDC	Zero-cross, "FASTON" terminals

All these products must be mounted on heatsinks in order to reach nominal performance.

- Dim. $21 \times 35.5 \times 15 \mathrm{~mm}$ $(0.83 \times 1.38 \times 0.59 \mathrm{in})$

SCF

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	LED	$1^{2} \mathrm{t}$	Protec.
SCF42160	$25 A$	$12-280 V A C$	600 V	$4-30 V D C$	yes	$312 A^{2} s$	-
SCF42324	$25 A$	$12-280 V A C$	600 V	$12-30 V D C$	no	$312 A^{2} s$	VDR
SCF62160	$25 A$	$24-600 V A C$	1200 V	$5-30 V D C$	yes	$265 A^{2} s$	-

All these products must be mounted on heatsinks in order to reach nominal performance.
Options E "large Entraxe" and L "FASTON 4.8 mm " are available on request.

SCFL

\rightarrow EMC optimized
(low electromagnetic emission)

- Dim. $44.5 \times 58 \times 33 \mathrm{~mm}$
$(1.73 \times 2.28 \times 1.30 \mathrm{in})$
These relays are designed to control resistive loads.

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1^{2} \mathrm{t}$
SCFL42100	25A	12-280VAC	600 V	4-30VDC	$312 A^{2} \mathrm{~S}$
SCFL62100	25A	24-440VAC	1200 V	5-30VDC	$312 A^{2} \mathrm{~S}$

All these products must be mounted on heatsinks in order to reach nominal performance.

These relays are designed for use in applications where low electromagnetic emission is essential: household and electrical appliances, information technology and medical equipment. The range complies with the EN 500811 standard (Electromagnetic compatibility. Generic emission standard. Residential, commercial and light industry).
Also check out our SON range on page 14.

- Dim. $44.5 \times 58.2 \times 32 \mathrm{~mm}$
$(1.73 \times 2.28 \times 1.26 \mathrm{in})$

- for fast connections!

SP7/SP8

With its high immunity components, built-in overvoltage protection combined with 800 Vpic power elements, these relays can be used with any type of load, such as heating or controlling single phase asynchronous motors. This range is ideal for the food and beverage industry.

Product reference	Thyristor rating	Switching current AC-51	Switching voltage	Peak voltage	Control voltage	$1^{2} \mathrm{t}$	Specifications
SP752120	25A	12A	12-280VAC	800 V	$3-32 \mathrm{VDC}$	$340 A^{2} \mathrm{~S}$	Random
SP852120	25A	12A	12-280VAC	800 V	4-32VDC	$340 A^{2} \mathrm{~S}$	Zero-cross

All these products must be mounted on heatsinks in order to reach nominal performance.

- Dim. $38 \times 66.8 \times 22 \mathrm{~mm}$
$(1.50 \times 2.60 \times 0.87 \mathrm{in})$

SCO

\rightarrow Four-leg power solid state relays

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1^{2} \mathrm{t}$	Led	Specifications
SCQ842060	$4 \times 25 \mathrm{~A}$	$12-280 \mathrm{VAC}$	600 V	$3-32 \mathrm{VDC}$	$288 \mathrm{~A}^{2} \mathrm{~S}$	yes	Common +VDC
SCQ842160	$4 \times 25 \mathrm{~A}$	$12-280 \mathrm{VAC}$	600 V	$3-32 \mathrm{VDC}$	$288 \mathrm{~A}^{2} \mathrm{~S}$	yes	Common OVDC + polarizing key

All these products must be mounted on heatsinks in order to reach nominal performance.

- Dim. $44.5 \times 58.2 \times 27 \mathrm{~mm}$ $(1.73 \times 2.28 \times 1.06 \mathrm{in})$

FLASHING RELAYS

ST6

Product reference	Switching current	Switching	Poltage	voltage

All these products must be mounted on heatsinks in order to reach nominal performance.

The ST6 power flashing solid state relay range is designed for alternating current. With FASTON outputs, they can switch loads up to 12A below 1250VAC or loads up to 25A under 180-280VAC.
When voltage is applied, the output flashes at a frequency of 1 to 2 Hz in accordance with the position of the external switch.

- Dim. $67 \times 38 \times 37.5 \mathrm{~mm}$ $(2.64 \times 1.50 \times 1.46 \mathrm{in})$

TWO-PHASE SOLID STATE RELAYS

Our two-phase range provides two solid state relays in a standard compact 45 mm enclosure. They are ideal for three-phase applications with two-phase disconnection only.

WIRING EXAMPLES

Control of 2 single-phase wired heating elements.

Two-phase SOB SSR to control heating elements wired in a star connection. Specifically designed for balanced low voltage loads without neutral.

Two-phase SOB SSR to control heating elements wired in a delta connection. Specifically designed for high voltage loads, balanced or not.

SOB5

- Power and control connections by FASTON terminals (Fig.1)
- Double input with connector CE100F ITWPANCON type or similar + Power connection by FASTON 6.3 mm terminals with IP20 protection (Fig.2)

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1^{2} \mathrm{t}$	Specifications	Fig.
SOB542460	$2 \times 25 \mathrm{~A}$	$12-280 \mathrm{VAC}$	600 V	$3-32 \mathrm{VDC}$	$265 \mathrm{~A}^{2} \mathrm{~s}$	zero-cross $/ 2$ controls	1
SOB562460	$2 \times 25 \mathrm{~A}$	$24-600 \mathrm{VAC}$	1200 V	$3.5-32 \mathrm{VDC}$	$265 \mathrm{~A}^{2} \mathrm{~s}$	zero-cross $/ 2$ controls	1
SOB544330	$2 \times 40 \mathrm{~A}$	$12-275 \mathrm{VAC}$	600 V	$8-30 \mathrm{VDC}$	$882 \mathrm{~A}^{2} \mathrm{~s}$	zero-cross $/ 2$ controls	2
SOB564330	$2 \times 40 \mathrm{~A}$	$24-510 \mathrm{VAC}$	1200 V	$10-30 \mathrm{VDC}$	$882 \mathrm{~A}^{2} \mathrm{~s}$	zero-cross $/ 2$ controls	2

All these products must be mounted on heatsinks in order to reach nominal performance.

SOB6

Double input with CE100F ITWPANCON type connector or equivalent.

\rightarrow zero-cross

Product	Thyristor reference	Switching rating	voltage	Peak voltage	Control voltage	$1^{2 t}$	Specifications
SOB665300	$2 \times 50 \mathrm{~A}$	$24-600 \mathrm{VAC}$	1200 V	$10-30 \mathrm{VDC}$	$1680 \mathrm{~A}^{2} \mathrm{~s}$	2 controls	3

All these products must be mounted on heatsinks in order to reach nominal performance.

SOB7

\rightarrow Random or instant switching

Thyristor
rating
$2 \times 35 A$
$2 \times 50 \mathrm{~A}$
$2 \times 75 \mathrm{~A}$

Switching voltage	Peak voltage
24-510VAC	1200 V
24-510VAC	1 200V
4-510VA	1200 V

Control voltage	$1^{2 t}$	Specifications	Fig.
$8-30 V D C$	$1250 A^{2} s$	2 controls	
$8-3 O V D C$	$2500 A^{2} s$	2 controls	4
$8-30 V D C$	$7200 A^{2} s$	2 controls	

TWO-PHASE SOLID STATE RELAYS

The zero cross SOB8 range, designed for most types of loads.

Product reference	Thyristor rating	Switching voltage	Peak voltage	Control voltage	$1^{2} \mathrm{t}$	Specifications	Fig.
SOB863860	$2 \times 35 A$	$24-600 V A C$	$1200 V$	$17-30 V A C / D C$	$882 A^{2} s$	2 controls	1
SOB865660	$2 \times 50 A$	$24-600 V A C$	$1200 V$	$8-30 V D C$	$2500 A^{2} s$	2 controls	1
SOB867640	$2 \times 75 A$	$24-510 V A C$	$1200 V$	$8-30 V D C$	$7200 A^{2} s$	2 controls $/$ Transil	1

The zero cross SOB9 range, specifically designed for AC-51 resistive loads.

Product
reference
SOB942360
SOB942660
SOB943360
SOB945360
SOB962060
SOB963660
SOB965060
SOB965160
SOB965660
SOB967660

Thyristor rating	Switching voltage
$2 \times 25 \mathrm{~A}$	$12-280 \mathrm{VAC}$
$2 \times 25 \mathrm{~A}$	$12-280 \mathrm{VAC}$
$2 \times 35 \mathrm{~A}$	$12-280 \mathrm{VAC}$
$2 \times 50 \mathrm{~A}$	$12-280 \mathrm{VAC}$
$2 \times 25 \mathrm{~A}$	$24-600 \mathrm{VAC}$
$2 \times 35 \mathrm{~A}$	$24-600 \mathrm{VAC}$
$2 \times 50 \mathrm{~A}$	$24-600 \mathrm{VAC}$
$2 \times 50 \mathrm{~A}$	$24-600 \mathrm{VAC}$
$2 \times 50 \mathrm{~A}$	$24-600 \mathrm{VAC}$
$2 \times 75 \mathrm{~A}$	$24-600 \mathrm{VAC}$

Peak
voltage
600 V
600 V
600 V
600 V
600 V
1200 V
1200 V
1200 V
1200 V
1200 V

Control voltage	$1^{2} t$	Specifications	Fig.
$10-30 V D C$	$600 A^{2} s$	1 control	1
$10-30 V D C$	$600 A^{2} s$	2 controls	1
$10-30 V D C$	$1250 A^{2} s$	1 control	1
$10-30 V D C$	$2800 A^{2} s$	1 control	1
$3,5-32 V D C$	$380 A^{2} s$	2 controls	1
$10-30 V D C$	$1250 A^{2} s$	2 controls	1
$4-32 V D C$	$1680 A^{2} s$	2 controls	1
$6-16 V D C$	$1680 A^{2} s$	2 controls	1
$10-30 V D C$	$2500 A^{2} s$	2 controls	1
$10-30 V D C$	$7200 A^{2} s$	2 controls	1

- Dim. $45 \times 58.5 \times 27 \mathrm{~mm}$ $(1.77 \times 2.28 \times 1.06 \mathrm{in})$
(Connectors not included)

SOBR

NEW

The SOBR range with "push-in" spring type power connectors

Specifications	Fig.
2 controls	
Ready to use product mounted on heatsink	2

Dim. $45 \times 58.5 \times 27 \mathrm{~mm}$ $(1.77 \times 2.28 \times 1.06 \mathrm{in})$

Product reference	Specifications	Relay type	Fig.	1	12
$1 \mathrm{YO20915}$	2 pole screw connector	SOB7 / SOB8 / SOB9 - 1 control	1		
1 Y022715	2 pole screw connector 270°	SOB7 / SOB8 / SOB9 - 1 control	2	3 -	\% 4
1 Y040915	4 pole screw connector 90° for SOB	SOB7 / SOB8 / SOB9-2 controls	3		
1 Y041660	4 pole screw connector $90^{\circ} \& 270^{\circ}$ for SOB	SOB7 / SOB8 / SOB9-2 controls	4		
1 Y041817	4 pole spring connector 180° for SOB	SOB7 / SOB8 / SOB9-2 controls	5	5	6
1 Y042217	4 pole screw connector 45° for SOB	SOB7 / SOB8 / SOB9-2 controls	6		
1 Y042715	4 pole screw connector 270° for SOB	SOB7 / SOB8 / SOB9-2 controls	7		
1 Y042716	4 pole spring connector 270° for SOB	SOB7 / SOB8 / SOB9-2 controls	8	7	
1 Y044604	4 pole spring connector $180^{\circ}+$ locking	SOB7 / SOB8 / SOB9-2 controls		-	-

THREE-PHASE SOLID STATE RELAYS

celduc \circledR^{\circledR} relais has several ranges of solid-state relays for three-phase applications. Various models are available with ratings up to 125A max. per phase, with either AC or DC input and with instant (asynchronous) or zero cross (synchronous) switching.

WIRING EXAMPLES

A three-phase SMT8/ SGT8 type SSR controlling an AC-53 three-phase motor with thermal magnetic protection.

An SV9 inverter type three-phase SSR reversing the rotation direction of a threephase asynchronous motor.

An SMT/SGT type threephase SSR to control heating elements wired in a star connection with fuse protection.

An SMT/SGT type threephase SSR to control heating elements wired in a delta connection with modular circuit breaker protection.

An SMB/SGB type SSR to control
heating elements wired in a star connection with fuse protection.

EASY AND FAST CONNECTIONS

cel3pac®

- Version with 100 mm installation width,
- Small footprint: 34.7 mm height,
- Improved connections to increase switching current limits,
- Increase in the size of terminals on the power side: up to $50 \mathrm{~mm}^{2}$

sightpac®

- Compact 45 mm version,
- Same fixing distance as our okpac ${ }^{\circledR}$ and celpac ${ }^{\circledR}$ ranges,
- An innovative and scalable range (optional future modules).

Connection on the CONTROL SIDE
 4-pole plug 4-pole plugg spring connector (others available on request)

Standard with screws

With spring connectors

With pluggable connector

sightpac ${ }^{\circledR}$

NEW

SMB7/SMT7 random orinstant switching.
SMB8/SMT8 zero cross for heavy duty loads.
SMB9/SMT9 zero cross forac-51 Resistive Loads

SMB

This range has been designed to control three-phase loads with a delta connection, if balanced, with a star connection without neutral. Two of the three phases are switched, the third is directly connected.
$\rightarrow 2$ leg three-phase SSRs

SMT \rightarrow Three-phase SSRs with pluggable connectors

- Dim. $45 \times 100 \times 48 \mathrm{~mm}$ $(1.77 \times 3.94 \times 1.89 \mathrm{in})$
\rightarrow "Ready to use" version with built-in heatsink

Product reference	Thyristor rating	Switching current AC-51 ($40^{\circ} \mathrm{C}$)	Switching current $\mathrm{AC}-53\left(40^{\circ} \mathrm{C}\right)$	Switching voltage	Peak voltage	Control voltage	$12^{2} \mathrm{t}$	Protec.
SMT8628521	$3 \times 25 \mathrm{~A}$	$3 \times 17 A$	$3 \times 5 \mathrm{~A}$	24-520VAC	1200V	24-255VAC/DC	$380 A^{2} \mathrm{~S}$	RC - VDR

SGB ${ }^{2 G}$

Product reference	Thyristor rating	Switching current AC-51 ($40^{\circ} \mathrm{C}$)	Switching current AC-53 ($40^{\circ} \mathrm{C}$)	Switching voltage	Peak voltage	Control voltage	$1^{2} t$	Protec.
SGB8850200	$3 \times 50 \mathrm{~A}$	$3 \times 50 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-640VAC	1600V	4-30VDC	$2800 A^{2} 5$	VDR
SGB8890200	3x125A	$3 \times 85 A$	$3 \times 32 \mathrm{~A}$	24-640VAC	1600 V	4-30VDC	$22000 A^{2} \mathrm{~s}$	VDR
All these products must be mounted on heatsinks in order to reach nominal performance.$\cdot \operatorname{Dim} .100 \times 76.5 \times 35.5 \mathrm{~mm}$								

THREE PHASE SOLID STATE RELAYS

cel3pac ${ }^{\circledR}$
 NEW
 REMINDER

SGB7 / SGT7 random orinstant switching
SGB8 / SGT8 zero cross for heavy duty Loads
SGB9 / SGT9 zero cross for ac-51 RESIITVE LoAds
SGB ${ }^{2 G}$
$\rightarrow 2$ leg three-phase SSRs

Product reference	Thyristor rating	Switching current AC-51 ($40^{\circ} \mathrm{C}$)	Switching current AC-53 ($40^{\circ} \mathrm{C}$)	Switching voltage	Peak voltage	Control voltage	$12 t$	Protec.	Fig.
SGB8630305	3x35A	$3 \times 23,5 \mathrm{~A}$	$3 \times 7 \mathrm{~A}$	24-600VAC	1600V	4-32VDC	$1250 \mathrm{~A}^{2} \mathrm{~s}$	TVS	1
SGB8650306	$3 \times 50 \mathrm{~A}$	$3 \times 41 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-600VAC	1600 V	4-32VDC	$2800 A^{2} \mathrm{~s}$	TVS	

Product reference	Thyristor rating	Switching current AC-51 ($40^{\circ} \mathrm{C}$	Switching current AC-53 ($40^{\circ} \mathrm{C}$)	Switching voltage	Peak voltage	Control voltage	$18 t$	Protec.	Fig.
SGT7650500	3x50A	$3 \times 42 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-520VAC	1600 V	4-30VDC	$2800 A^{2} \mathrm{~s}$	RC - VDR	1
SGT7690500	3x125A	$3 \times 64 \mathrm{~A}$	$3 \times 32 \mathrm{~A}$	24-520VAC	1600 V	4-30VDC	$22000 A^{2} \mathrm{~s}$	RC - VDR	1
SGT8638500	3x35A	$3 \times 35 \mathrm{~A}$	3x7A	24-520VAC	1600V	24-255VAC/DC	$1250 A^{2} \mathrm{~s}$	RC - VDR	1
SGT8650810	3x50A	$3 \times 42 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-520VAC	1600 V	4-30VDC	$2800 A^{2} \mathrm{~s}$	RC - VDR + Temperature alarm	3
SGT8658500	$3 \times 50 \mathrm{~A}$	$3 \times 42 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-520VAC	1600 V	24-255VAC/DC	$2800 A^{2} \mathrm{~s}$	RC - VDR	1
SGT8670500	3x75A	$3 \times 54 \mathrm{~A}$	3×16 A	24-520VAC	1600 V	4-30VDC	$7200 A^{\text {s }}$ S	RC - VDR	1
SGT8678500	$3 \times 75 \mathrm{~A}$	$3 \times 54 \mathrm{~A}$	$3 \times 16 \mathrm{~A}$	24-520VAC	1600 V	24-255VAC/DC	$7200 A^{2} \mathrm{~s}$	RC - VDR	1
SGT8690500	$3 \times 125 \mathrm{~A}$	$3 \times 64 \mathrm{~A}$	$3 \times 32 \mathrm{~A}$	24-520VAC	1600 V	4-30VDC	$22000 A^{2}$ s	RC - VDR	1
SGT8698500	3x125A	$3 \times 64 \mathrm{~A}$	$3 \times 32 \mathrm{~A}$	24-520VAC	1600 V	24-255VAC/DC	$22000 A^{2} \mathrm{~s}$	RC - VDR	1
SGT8850200	$3 \times 50 \mathrm{~A}$	$3 \times 42 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-640VAC	1600 V	4-30VDC	$2800 A^{2} \mathrm{~s}$	VDR	1
SGT8858200	3x50A	3×42 A	$3 \times 12 \mathrm{~A}$	24-640VAC	1600 V	24-255VAC/DC	$2800 A^{2} \mathrm{~s}$	VDR	1
SGT8859200	$3 \times 50 \mathrm{~A}$	3×42 A	$3 \times 12 \mathrm{~A}$	24-640VAC	1600 V	90-280VAC/DC	$2800 A^{\text {s }}$ S	VDR	1
SGT8879200	3x75A	$3 \times 54 \mathrm{~A}$	3×16 A	24-640VAC	1600 V	90-280VAC/DC	$7200 A^{\text {s }}$ S	VDR	1
SGT9834300	$3 \times 35 \mathrm{~A}$	$3 \times 30 \mathrm{~A}$	-	24-660VAC	1600V	4-30VDC	$1250 A^{2} \mathrm{~s}$	TVS	1
SGT9854300	$3 \times 50 \mathrm{~A}$	3x42A	-	24-660VAC	1600 V	$4-30 \mathrm{VDC}$	$2800 A^{\prime} \mathrm{s}$	TVS	1
SGT9854320	$3 \times 50 \mathrm{~A}$	3×42 A	-	24-660VAC	1600 V	$4-30 \mathrm{VDC}$	$2800 A^{2} \mathrm{~s}$	TVS	2
SGT9874300	3x75A	$3 \times 54 \mathrm{~A}$	-	24-660VAC	1600 V	$4-30 \mathrm{VDC}$	$7200 A^{\text {s }}$ S	TVS	1

All these products must be mounted on heatsinks in order to reach nominal performance.
\rightarrow "Ready to use" version with integrated heatsink

SGT8658502	$3 \times 50 \mathrm{~A}$	$3 \times 24 \mathrm{~A}$	$3 \times 12 \mathrm{~A}$	24-520VAC	1600 V	24-255VAC/DC	$2800 \mathrm{~A}^{2} \mathrm{~S}$	RC - VDR	4
SGT8698503	$3 \times 125 A$	3×48 A	$3 \times 32 \mathrm{~A}$	24-520VAC	1600 V	24-255VAC/DC	$22000 A^{2} \mathrm{~s}$	RC - VDR	5
SGT8698504	$3 \times 125 \mathrm{~A}$	$3 \times 64 \mathrm{~A}$	$3 \times 32 \mathrm{~A}$	24-520VAC	1600 V	24-255VAC/DC	$22000 A^{2} \mathrm{~s}$	RC - VDR	6

elduc ${ }^{\circ}$
${ }_{\text {relais }}$
www.celduc-relais.com

MOTOR CONTROL

SMR

$\rightarrow A C$ inverter

This range, equipped with pluggable connectors, is used to reverse the rotation direction of a motor (2.2 kW max.).

Product reference	Switching current AC-53 $\left(40^{\circ} \mathrm{C}\right)$	Switching voltage	Control voltage	$1^{2 t}$	Protec.	Specifications 2 phase
SMR8621520	$3 \times 5 A$	$24-520 V A C$	$10-30 V D C$	$380 A^{2} S$	RC - VDR reversing + time delay	switching

All these products must be mounted on heatsinks in order to reach nominal performance.

- Dim. $45 \times 100 \times 48 \mathrm{~mm}$
$(1.77 \times 3.94 \times 1.89 \mathrm{in})$

SG9 SV9 SW9

$\rightarrow A C$ inverter

These relays are used to reverse the rotation direction of a motor.
The SV9 range is housed in an IP20 enclosure.
The SW9 range is ready to use with a heatsink and DIN rail mounting included.
They are all supplied with LED indicators and are protected from being gang-operated (interlocking).
Available with a 40 or 47.6 mm fixing distance ("E" suffix). \qquad

Product reference	Switching current AC-53 ($40^{\circ} \mathrm{C}$)	S
SG969100	$3 \times 6.6 \mathrm{~A}$	24
SG969300E	$3 \times 8.5 \mathrm{~A}$	24
SV969300E	$3 \times 8.5 \mathrm{~A}$	24
SV969500E	3×16 A	24
SW960330	$3 \times 4.5 \mathrm{~A}$	24
SW961230	$3 \times 8.5 \mathrm{~A}$	24

Control voltage	$1^{2} t$	Protec.
$10-30 V D C$	$612 A^{2} s$	
$12-30 V D C$	$1500 A^{2} s$	
$12-30 V D C$	$1500 A^{2} s$	reversing + time delay
$12-30 V D C$	$5000 A^{2} s$	
$12-30 V D C$	$1500 A^{2} s$	
$12-30 V D C$	$1500 A^{2} s$	

Specifications	Fig.
3 phase switching	1
2 phase switching	1
2 phase switching	2
2 phase switching	2
2 phase switching	3
2 phase switching	4

- Dim. $100 \times 76 \times 72 \mathrm{~mm}$ $(3.94 \times 2.99 \times 2.83 \mathrm{in})$

- Dim. $83 \times 90 \times 1555 \mathrm{~mm}$ $(3.27 \times 3.54 \times 61.22 \mathrm{in})$

XKRD SGRD

\rightarrow DC inverter

The SGRD inverter includes all the control electronics as well as short circuit protection and lockout to prevent the two rotation directions from being gang-operated.
Ready to use and mounted on a DIN rail, the XKRD30506 module consists of four static switches pre-wired in the inverter's rotation direction for a DC motor (100W @ 24VDC).

MOTOR CONTROL

SO4

\rightarrow Single phase starters

This range of single-phase starters is designed for universal motors or lamps.

ANALOGUE CONTROL RELAYS

 celduc $®$ relais offers a wide range of controllers with various control modes and input types.Types of input control:
0-10VDC, 4-20mA , potentiometer or PWM (Pulse Width Modulation).

3 control modes are available:

- Burst control mode controllers
- Full wave pulse controllers
- Phase angle controllers

A technology for every application!

WHICH MODE TO CHOOSE?

\rightarrow Comparison of the 3 control modes - setting to 50%

	Working principles	Advantages	Typical applications
BURST CONTROL MODE SO3 RANGE (page 33)	In a given cycle time (in this case, 1 or 2 seconds), the variation of the load power is achieved by eliminating whole alternations. Eliminations are distributed in accordance with a complex rule. Thus, in this example, the load is only powered to 50% because of the elimination of one alternation out of two.	This type of control makes it possible for the power to be finely modulated in accordance with the analog control, while limiting disturbances.	For controlling resistive loads at low thermal inertia, such as short wave infrared emitters (infrared heater bulbs)
FULL WAVE PULSE CONTROLLERS SG5 RANGE (page 34)	In a given cycle time (variable depending on the models), the variation of the load power is achieved by eliminating whole alternations. The elimination is performed linearly in accordance with the Ton/Tcycle duty cycle requested by the control input. Thus, in this example, the load is only powered for 50% of the cycle time (Ton/Tcycle=0.5).	This type of control has the advantage of not generating interference since trigger takes place at around 0 voltage.	Suitable for high inertia loads (industrial furnaces, etc.).
PHASE ANGLE CONTROLLERS SINGLE PHASE SG4-SO4-SIL4-SIM4 RANGES (pages 32-33) THREE-PHASE SGTA AND SVTA RANGE (page 35)	In terms of the principle of the light dimmer, this control mode makes it possible to finely vary the load power by removing a part of the supply voltage sinusoid in accordance with the control input. The proportional response between the control input and the power output depends on the controller model and can be linear in angle, U^{2} or in Urms. Thus, in this example, the load is only powered to 50% because of the elimination of half of the supply voltage's half cycles.	This control mode makes it possible to finely adjust the load power, for example, when the accuracy of the temperature regulation is prioritized over the electromagnetic disturbances generated by this type of solution (a filter is recommended).	Mainly for loads that rapidly react when faced with voltage variations (lamps, motors, etc.). Also for DC loads behind a rectifier bridge (heater wires, Peltier effect modules, etc.).

ANALOGUE CONTROL RELAYS

SG4

\rightarrow Single phase angle controllers

This relay is designed to proportionally vary the switching point on a sinusoidal mains supply via an isolated analogue control signal thereby varying the RMS voltage at the terminals of the load. Typical applications: light dimmers, single phase
motor variable speed drives (vibrating bowl feeders, etc.), heating element regulation.
Model equipped with an LED and protection via RC and VDR network. Built-in power supply.

Product reference	Thyristor rating	Switching voltage	Control voltage	$1{ }^{2} \mathrm{t}$	External power supply required?
SG444020	40A	115-265VAC	0-10VDC	$1500 A^{2} \mathrm{~s}$	no
SG464020	40A	200-460VAC	0-10VDC	$1500 A^{2} \mathrm{~s}$	
SG468020	70A	200-460VAC	--10VDC	$5000 A^{2} s$	
SG469020	110A	200-460VAC	0-10VDC	$20000 A^{2} \mathrm{~S}$	
SG444120	40A	115-265VAC	Potentiometer	$1500 A^{2} \mathrm{~s}$	
SG464120	40A	200-460VAC	Potentiometer	$1500 A^{2} \mathrm{~s}$	
SG469120	110A	200-460VAC	Potentiometer	$20000 A^{2} \mathrm{~S}$	
SG444420	40A	115-265VAC	4-20mA	$1500 \mathrm{~A}^{2} \mathrm{~s}$	
SG464420	40A	200-460VAC	4-20mA	$1500 A^{2} \mathrm{~s}$	
SG468420	70A	200-460VAC	4-20mA	$5000 A^{2} \mathrm{~S}$	
SG469420	110A	200-460VAC	4-20mA	$20000 A^{2} \mathrm{~S}$	

- Dim. $100 \times 73,5 \times 39,5 \mathrm{~mm}$ $3.94 \times 2.87 \times 1.54 \mathrm{in})$

All these products must be mounted on heatsinks in order to reach nominal performance.

SO4

\rightarrow Single phase angle controllers

Product reference	Thyristor rating	Switching voltage	Control voltage	External power supply required?	Fig.
S0445020	50A	100-280VAC	0-10V	yes	1
S0465020	50A	200-480VAC	- 10 V	yes	1
S0468020	95A	200-480VAC	0-10V	yes	1
S0469020	125A	200-480VAC	0-10V	yes	1
S0468120	95A	200-480VAC	0-5V	yes	1
S0467501	75A	160-450VAC	1-5V	no	3
S0445320	50A	100-280VAC	Potentiometer	yes	1
S0465320	50A	200-480VAC	Potentiometer	yes	1
S0445420	50A	$90-265$ VAC	4-20mA	no	2
S0465420	50A	200-480VAC	4-20mA	no	2
S0467420	75A	200-480VAC	4-20mA	no	2
S0468420	95A	200-480VAC	4-20mA	no	2
S0469420	125A	200-480VAC	4-20mA	no	2
S0465620	50A	200-480VAC	PWM	yes	1

- Dim. $45 \times 58,2 \times 27 \mathrm{~mm}$ $(1.77 \times 2.28 \times 1.06 \mathrm{in})$

Other functions are available: phase angle controllers, full wave pulse controllers, burst control mode controllers, soft starting controllers, flashing timers, etc. Please contact us.

ANALOGUE CONTROL RELAYS

SIL4 / SIM4

\rightarrow Single phase angle controllers

Our SIx4 range is housed in a celpac® unit (ready to use). The microcontroller managing these controllers can adapt the function to your application. This range is mainly designed for resistive loads.

$(1.77 \times 3.15 \times 4.57 \mathrm{in})$

SO3

\rightarrow Burst control mode controllers ($\mu \mathrm{P}$ based unit)

This control mode is ideal for resistive loads that have a low thermal inertia, such as short wave infrared emitters (infrared heater bulbs). It also makes it possible for the power to be finely modulated in accordance with the analog control, while limiting disturbances.
This control mode consists of switching the streams of full sine waves equally distributed along a fixed modulation period (TM) in accordance with the analog input signal. The $\mu \mathrm{P}$ constantly computes the number of full sine waves to be switched along the TM period.

$(1.77 \times 2.28 \times 1.06 \mathrm{in})$

MULTIZONES POWER CONTROLLER

Taking into account the identified market needs, celduc $®$ relais has developed infrared lamp temperature control units. The technology used, based on solid state relays for power associated with complex electronics, makes it possible to provide precise and efficient power control of up to 12 lamps.
A program is used to inform the PLC of the operating state and possible faults in the manufacturing process.

Characteristics of the control boxes:

- Heating unit for a maximum of 12 IR channels (4 kW max. per channel and 36 kW max. per unit)
- U^{2} type mains power variation correction (syncopated)
- Detections: broken lamp < 250 ms ; overvoltage/undervoltage; overheating; broken fuse
- Built-in protection
- Control using Profibus DP

ANALOGUE CONTROL RELAYS

SG5

\rightarrow Full wave pulse controllers

This relay has an analog input isolated from the mains to proportionally vary the operating duty cycle of a load (t / T) in relation to the input voltage. This control mode consists of switching the streams of full sine waves equally distributed along a fixed modulation period (TM) in accordance with the analog input signal. Models equipped with an LED and protection via RC and VDR network.
Application: temperature control.

Product reference	Thyristor rating	Switching voltage	Control voltage	$12 t$	External power supply required?
SG541020	10A	230VAC	0-10VDC	$72 A^{2} \mathrm{~s}$	
SG544020	40A	230VAC	$0-10 \mathrm{VDC}$	$610 A^{2} \mathrm{~s}$	
SG564020	40A	400VAC	$0-10 \mathrm{VDC}$	$610 A^{2} \mathrm{~s}$	
SG544120	40A	230VAC	Potentiometer	$610 A^{2} s$	no
SG564120	40A	400VAC	Potentiometer	$610 A^{2} s$	
SG541420	10A	230VAC	4-20mA	$72 A^{2} \mathrm{~s}$	
SG564420	40A	400VAC	4-20mA	$610 A^{2} s$	

For higher power ratings and three-phase applications, please request a copy of our application notes. All these products must be mounted on heatsinks in order to reach nominal performance.

SWG5

\rightarrow Single phase power controllers

$\left.\begin{array}{c|c|c|c|}\begin{array}{c}\text { Product } \\ \text { reference }\end{array} & \begin{array}{c}\text { Switching } \\ \text { power }\end{array} & \begin{array}{c}\text { Switching } \\ \text { voltage }\end{array} & \text { Control } \\ \text { voltage } \\ \text { SWG50210 } & 2 \mathrm{~kW} & 230 \mathrm{VAC} & 0-10 \mathrm{VDC} \\ \text { SWG50810 } & 8 \mathrm{~kW} & \text { 230VAC } & 0-10 \mathrm{VDC}\end{array}\right]$
$0-5 \mathrm{~V}$ control voltage or potentiometer available on request.

SWG8
\rightarrow Three-phase power controllers

Product reference	Switching power	Switching voltage	Control voltage
SWG81510	20kW		
SWG82710	27 kW		
SWG83610	36 kW		
SWG84210	42 kW	400VAC	$0-10 \mathrm{VDC}$
SWG84810	48 kW		
SWG86010	60 kW		
SWG88010	80 kW		

These controllers have an analog input isolated from the mains to proportionally vary the operating duty cycle of a heating element (heating element batteries).
This control mode consists of switching the streams of full sine waves equally distributed along a fixed modulation period (TM) in accordance with the analog input signal.
Application: Single phase battery.

- Dim. $100 \times 73,5 \times 39,5 \mathrm{~mm}$
$(3.94 \times 2.87 \times 1.54 \mathrm{in})$

THREE-PHASE PROPORTIONAL CONTROLLERS

SVTA

\rightarrow Controls any type of load (except capacitive loads), 3 or 4-wire (neutral), delta or star assembly:

- Resistive loads for temperature control (infrared lamps, furnaces, heating elements, etc.)
- Resistive loads for lighting control (filament and halogen lamps, UV, stage lighting, etc.)
- Loads including a transformer, an induction coil or a rectifier for voltage control (rectified power supplies, high voltage generators, etc.)
- Motor loads for speed control (depending on the type of motor and machine).

Product reference	Max. current AC-51	Max. current AC-53a	Control	External power supply required?
SVTA4650E	50A	16A	O-10V	no
SVTA4651E	50A	16A	Potentiometer	
SVTA4684E	95A (*)	25A	4-20mA	
SVTA4690E	125A (*)	30A	-10V	
SVTA4691E	125A (*)	30A	Potentiometer	
SVTA4694E	125A (*)	30A	4-20mA	

* Maximum current, max. cross sectional area $=10 \mathrm{~mm}^{2}$, use double wires or special adaptors for currents $>50 \mathrm{~A}$. Please refer to the heatsink installation instructions.
\rightarrow Three-phase phase angle controllers with six proportional control thyristors (balanced currents, less harmonics, etc.)
\rightarrow Start and stop ramps (increases the unit's service life)
\rightarrow Diagnostic functions
\rightarrow Compact housing.

SGTA

- MAIN CHARACTERISTICS•

\rightarrow Minimal dimensions
\rightarrow Extensive network frequency $(40-65 \mathrm{~Hz})$
\rightarrow Built-in overvoltage protection
\rightarrow High 1^{2} t power elements
\rightarrow Control of isolated thyristors using optical couplers during the entire cycle and the 3 phases (balanced currents, less harmonics, etc.)
\rightarrow The minimum voltage applied on the load is the lowest in the market (3\% RMS compared to 40\% RMS offered by our competitors!)
\rightarrow A wide range of options are available on request
\rightarrow Manufactured in compliance with the major international standards: EMC, LVD, UL, VDE.

- TYPICAL APPLICATIONS •
\rightarrow Resistive loads for temperature control (infrared lamps, furnaces, heating elements, etc.)
\rightarrow Resistive loads for lighting control (filament and halogen lamps, stage lighting, etc.)

Product reference	Max. current AC-51	Switching voltage	Control	External power supply required ?
SGTA4650	50 A	$300-510 \mathrm{VAC}$	$0-10 \mathrm{~V}$	
SGTA4651	50 A	$300-510 \mathrm{VAC}$	$0-5 \mathrm{~V}$	An 8-32V external
SGTA4653	50 A	$300-510 \mathrm{VAC}$	Potentiometer	power supply is required
SGTA4654	50 A	$300-510 \mathrm{VAC}$	$4-20 \mathrm{~mA}$	

Other ratings are available on request.

- Dim. $75.15 \times 100 \times 46 \mathrm{~mm}$
$(2.95 \times 3.94 \times 1.81 \mathrm{in})$

DC SOLID STATE RELAYS

These relays are designed to switch DC loads, e.g solenoid valves, brakes, LEDs, motors (possibly on AC mains under specific conditions). All technologies are available:

MOSFET

For applications requiring transient overcurrent withstand (motors).

BIPOLARE

For applications where a low control current is required.

IGBT

For high voltage applications (> 600VDC)

MOSFET Technology

A TECHNOLOGY FOR EVERY APPLICATION! CURRENTLY UP TO 1200VDC AND 150A

ES001000
0-80A
-130VDC
Voltage protection option (C1, D2) for the SOM range

- Dim. $29 \times 12.7 \times 25.4 \mathrm{~mm}$ $(1.14 \times 0.47 \times 0.98 \mathrm{in})$

- Dim. $43.6 \times 6.3 \times 24.5 \mathrm{~mm}$ $(1.69 \times 0.24 \times 0.94 \mathrm{in})$

- Dim. $44.5 \times 58.2 \times 27 \mathrm{~mm}$ $(1.73 \times 2.28 \times 1.06 \mathrm{in})$

$(1.77 \times 2.28 \times 1.18$ in)

BIPOLAR Technology

|GBT Technology

Product reference	Switching current	Switching voltage	Peak voltage	Control voltage	Protection
SCIO251700	25A	0-1700VDC	1700V	4.5-32VDC	Backward diode
SCI0501200	50A	0-1200VDC	1200V	$4.5-32 \mathrm{VDC}$	Backward diode
SCIO100600	100A	0-600VDC	600 V	4.5-32VDC	Backward diode
SDI0501700	50A	24-940VDC	1700V	24-48VDC	Depending on models : > Over-voltage protection > Load short circuit protection > Over-load temperature protection
SDI0501710	50A	24-940VDC	1700V	72-110VDC	
SDI1001700	100A	24-940VDC	1700V	$24-48 \mathrm{VDC}$	

Products without protection (Transil or varistor (VDR)) or only protected by a diode must be equipped with an external overvoltage protection. The maximum operating voltage is usually equal to half the specified maximum switchable voltage.

With celduc® relais, your switches on continuous networks are under control!

On request: "ready to use" products, currents protected with built-in

- Dim. $157 \times 68 \times 83 \mathrm{~mm}$ $(6.18 \times 2.68 \times 3.27 \mathrm{in})$

- Dim. $44.5 \times 58.2 \times 27 \mathrm{~mm}$ $(1.73 \times 2.28 \times 1.06 \mathrm{in})$
 voltage protection, proportional control and DC motor inverters. Please contact us!

APPLICATIONS
DC power supplies (converters like choppers, inverters, ...)
Signal switching (testing equipment, ...)
Electromagnets (induction motor braking, ...)
Heating elements (air conditioning in trains, tramways, ...)
Batteries (ships, solar systems, ...)
DC Motors (travelling cranes, cranes, vehicles, ...)

ACCESSORIES

Heatsinks

Product reference	Thermal characteristics	Specifications
WF031100	$0.3 \mathrm{~K} / \mathrm{W}$	ventiled for DIN rail or screw - fan supply 230Vac
WF031200	$0.3 \mathrm{~K} / \mathrm{W}$	ventiled for DIN rail or screw - fan supply 24Vdc
WF050000	$0.55 \mathrm{~K} / \mathrm{W}$	DIN rail adaptor as option
WF071000	$0.7 \mathrm{~K} / \mathrm{W}$	DIN rail adaptor as option
WF115100	$0.9 \mathrm{~K} / \mathrm{W}$	for DIN rail or screw
WF112100	$1 \mathrm{~K} / \mathrm{W}$	for DIN rail or screw
WF108110	$1.1 \mathrm{~K} / \mathrm{W}$	for DIN rail or screw
WF121000	$1.2 \mathrm{~K} / \mathrm{W}$	for DIN rail or screw
WF124000	$1.2 \mathrm{~K} / \mathrm{W}$	DIN rail adaptor as option
WF114200	$1.75 \mathrm{~K} / \mathrm{W}$	for DIN rail or screw
WF210000	$2.1 \mathrm{~K} / \mathrm{W}$	DIN rail adaptor as option
WF151200	$2.2 \mathrm{~K} / \mathrm{W}$	for DIN rail or screw
WF311100	$3 \mathrm{~K} / \mathrm{W}$	for DIN rail or screw

Dimensions (in)	Relay type	Fig
$4.33 \times 4.72 \times 5.71$	SO, SC, SG, SV	1
$4.33 \times 4.72 \times 5.71$	SO, SC, SG, SV	1
$4.33 \times 3.94 \times 7.87$	SO, SC, SG, SV	2
$4.33 \times 3.50 \times 4.72$	SO, SC, SA, SU, SM, SG	3
$4.33 \times 3.94 \times 3.54$	SO, SC, SG, SV	4
$1.93 \times 4.61 \times 4.72$	SA, SU	5
$3.50 \times 3.19 \times 3.86$	SO, SC	6
$3.94 \times 1.57 \times 3.94$	SO, SC, SG, SV	7
$3.54 \times 3.94 \times 2.72$	SO, SC, SA, SU, SM	8
$1.77 \times 2.87 \times 3.94$	SO, SA, SU, SM	9
$3.78 \times 1.61 \times 2.17$	SO, SC	10
$1.77 \times 2.87 \times 3.15$	SO, SC, SA, SU	11
$0.87 \times 2.87 \times 3.15$	SA, SU	12

The Rth values are given for a temperature of $50^{\circ} \mathrm{C}$ in calm air. Other dimensions available on request.

Accessories

PROTECTION COVERS / FLAPS
1K199000
1K460000
1K470000
1K522000
$1 K 523000$

Protection cover for SGT/SG9
Protection cover for SC range (except SCB and 125A

MOUNTING KITS

$1 L 386100$
1 L382300
1 LK00100
1 LK00200
1LK00300
1 LK00700
THERMAL SEALS RELAY/HEATSINK
5TH15000
5TH21000
5TH21000
5TH23000
5TH24000
1LWP2300
1LWP2400
6.3 mm angled Faston 45° for SO
4.8 mm angled Faston 45° for SO
mounting SG-SVT-SV9 on heatsink or 1LD00500 mounting heatsinks on 1LD00400
special kit for high current (okpac range) thermal precut film for SC/SO adhesive thermal pads for SC/SO
adhesive thermal pads for SA/SU
mounting SC-SO-SF-SM-SU on heatsink or SC-SO on 1LD12020
thermal grease for 30 relays $\mathrm{SG} / \mathrm{SVT}$ ou 60 relays $\mathrm{SC} / \mathrm{SO}$

Assembling costs 5 TH23000 on SC/SO +5 TH23000
Assembling costs 5TH24000 on SA/SU + 5TH24000

DIN RAIL ADAPTORS

1 LD00400
 1 LD00500
 1LD12020

DIN rail adaptator for WF21/07/05
DIN rail adaptator for SG/SVT/SV969300
DIN rail adaptator for SC/SO vertical mounting

MOUNTING+HEATSINK+DIN ADAPTOR OPTION
1LWD1202 mounting of SC/S0 sur 1LD12020 + 1 LD1 2020

MOUNTING OPTION ONLY

IF QUANTITY > 10 (screw kit included)
1LW00000 \quad mounting of relays on heatsink
1LWD0000 mounting of heatsink on DIN rail adaptator

MAGNETIC SENSORS

MAGNETIC PROXIMITY SENSORS We are the experts

If you are looking for position, motion, presence, level or speed detection, then check out our range of magnetic proximity sensors.
We can even design a specific product for your applications! 70\% of our magnetic proximity sensors are developed in accordance with our customers' specifications.

At celduc®, we are constantly evolving in line with new applications and market developments. With our customers, we want to share our 45 years of experience and two detection technologies:

- The reed switch, a dry contact hermetically sealed within a tubular glass envelope. It remains a simple, reliable and low cost solution.
- Silicon, with two types of electronic cells, magnetoresistance or Hall effect which have different characteristics that can be used in a wide range of applications.

APPLICATIONS	39
SOMETECHNICAL REMINDERS	40
CUSTOMER SPECIFIC PRODUCTS	41
REED MACNETIC SENSORS	42-53
- Safety sensors	42-43
- Screw-mounted position sensors	44-45
- Tubular position sensors	46-47
- Sensors for lifts	. . 48
- Sensors for printed circuits	49
- Level \& flow sensors	50-51
- Sensors for window frames	. 52
- ATEX sensors	. . 53
ELECTRONICAL / HALL EFFECT SENSORS	49
CONTROL MAGNETS	54

Contents

TELL US ABOUT YOUR PROJECT AND WE’LL PROVIDE THE SOLUTIONS.

Applications

INDUSTRY

Counting
Cylinder positions
Machine safety
Advertising panel
Actuator position
Liquide level
Speed control

HOME AUTOMATION

Burglar alarms
Window position
Lifts
Blind control
Small and large appliances
Centralized Building Management
Swimming-pools

AVIATION,

SPACE AND MILITARY
Fuel and petroleum product levels Oil and water levels
Sensors and actuators for Airbus
Camera shutter control

SPECIFIC APPLICATIONS
ATEX
(explosive atmospheres)

WHAT IS A MAGNETIC PROXIMITY SENSOR?

The sensing element of a magnetic sensor can be a Hall cell, a magnetoresistive cell or a Reed switch which detect the presence of a magnetic field, in general this is a permanent magnet. It detects the position of a magnet without contact and transmits an electrical go-no-go or analog signal, depending on the model in question.

REED SWITCH SENSORS

A REED switch consists of a pair of ferromagnetic flexible metal contacts in a hermetically sealed glass envelope, filled with an inert gas. The contacts are usually normally open, closing when a magnetic field is present, or they may be normally closed and open when a magnetic field is applied.

THERE ARE DIFFERENT CONTACT TYPES

- NO / A Form > Normaly Open

- NC / B Form > Normaly Closed
- BISTABLE NO / L Form
- CHANGE-OVER / C Form

THE MAIN ADVANTAGES ARE:

\rightarrow No power supply required,
\rightarrow Can operate in harsh environments,
\rightarrow Extensive sensing range (depending on the magnetic sensitivity of the switch, the power ofthe magnet as well as the magnetic environment),
\rightarrow Economic solution.

REMINDER : Reed switches and detectors using reed switches can switch both AC and DC currents.
The values provided in our data sheets for current and voltage are maximum values. It means that in DC applications it represents the maximum switching current and voltage. In AC applications these values are peak values. To calculate the nominal value you should divide this by 1.414.

ELECTRONIC SENSORS

Electronic sensor detection is based on the occurrence of a voltage proportional to the magnetic field on the Hall sensors and on a change in resistance also proportional to the magnetic field on sensors fitted with magneto resistors. The variations of these signals are processed by the sensor which emits an go-no-go or analog signal to the user in accordance with the customer's needs. These sensors require a power supply.

THE MAIN ADVANTAGES ARE:

\rightarrow They operate at high a frequency: > 20 kHz
\rightarrow Shock and vibration resistant
\rightarrow Long service life

CONTROL MAGNETS

To control REED switch or HALL effect magnetic sensors, a magnet must be used. Please go to page 54 to view our complete range of coated and uncoated magnets.

THE SENSOR/MAGNET COMBINATION MUST BE SELECTED IN ACCORDANCE WITH THE TERMS OF USE

\rightarrow Researched activation distance (action and release),
\rightarrow Operating temperature,
\rightarrow Operating mode (perpendicular or parallel movement? Face-to-face activation?),
\rightarrow Geometry,
\rightarrow Required corrosion resistance, etc.

REMINDER: The guaranteed activation distance depends on the sensor's sensitivity and the magnet's power. In this selection guide, we provide an example of a guaranteed activation distance for a given magnet. However, celduc® is always here to help you choose the best magnet/sensor combination for your needs.

CUSTOMER SPECIFIC PRODUCTS

MORE THAN 50\% OF OUR SENSORS ARE MANUFACTURED IN ACCORDANCE WITH CUSTOMER SPECIFICATIONS. HERE ARE A FEW EXAMPLES:

AIRCRAFT

Supplying this industry is proof of our reliability. celduc \circledR^{\circledR} relais has developed special sensors to detect the opening/closing of doors, for example, push-buttons used to detect open/closed doors in the Airbus A380; sensors to detect tank refueling in the Dassault Rafale and Saab JAS 39 Gripen fighters; level sensors for AIRBUS humidifiers, etc.

NUCLEAR

celduc® relais has designed and manufactured sensors for controlling nuclear reactors. These sensors are used in a system with the highest safety level. Our sensors have therefore undergone rigorous performance testing in extreme conditions. Developing sensors for nuclear reactors once again demonstrates the ability of celduc® relais to create customized solutions in industries where reliability is critical.

AGRICULTURE

In agriculture, there are many ways in which our magnetic sensors can be applied. celduc® has developed a magnetic proximity sensor for metal detection. No more need for magnets!

A TEAM OF EXPERTS AT YOUR SERVICE

SENSORS AND CONNECTED OBJECTS

Connect our sensors thanks to our energy efficient mobile communication solutions! Using networks made for the internet of things, our energy efficient wireless connection modules can connect all types of detection needs. Thanks to our professional expertise in the field of magnetic detection and the combination of reed technology and LPWAN networks (low-power wide-area network), our sensors are:
autonomous: up to 10 years of uninterrupted use without changing or recharging the batteries,
\rightarrow connected: directly access the status of your position and level sensor from your mobile or computer and be alerted of any changes,

\rightarrow simple to use: no SIM card or complex parameters, manage your sensors directly from our web platform and connect anywhere in the world with the same model,
\rightarrow economical: much more affordable than traditional mobile networks, LPWAN solutions are particularly well suited to connected sensors and now cover more than 90% of world territory.

SAFETY MAGNETIC SENSORS

By preventing any dangerous machine movements, they protect machine operators when opening protective guards, doors or covers.

A SOLUTION FOR ALL REQUIRED SAFETY LEVELS!

3 SAFETY LEVELS COMPLIANT WITH STANDARDS EN ISO 13849-1 AND EN ISO 62061:
The latest safety standards are based on concepts such as the security level (SIL) or the performance level (PL).

SIL 1
$P L=C$

+SAFETY MODULE ADAPTED
SIL 1 / 2 / 3
$P L=C / D / E$

SAFETY MAGNETIC

$\triangle \triangle \triangle \triangle$

 SENSORS
PXS / PSS / PSA

PXS, PSS or PSA products are designed to control the opening of protective devices, machine casings and access doors of machines considered to be dangerous.

Product reference	PXS79150	PXS59150	PXS10350	PXS70150	PSS79050	PSS79150	PSS59050	PSS59150	PSA60010	PSA60020
Contact status	20	O+F	$20+1 \mathrm{~F}$	$20+1 F$	20	20	O+F	O+F	10 solid state	10 solid state
Current limiting resistor	10Ω	100	-	10,	10Ω	10,	10Ω	10Ω	-	-
Max. switching power	3VA	500VA	500VA							
Max. switching voltage	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & 100 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	24-440VAC	6-440VAC
Max. switching current	100 mA	3A	3A							
Cable length	$\begin{gathered} \text { Cable } \\ 16.40 \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { Cable } \\ 16.40 \mathrm{ft} \end{gathered}$	Cable 16.40 ft	$\begin{gathered} \text { Cable } \\ 16.40 \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { Cable } \\ 16.40 \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { Cable } \\ 16.40 \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { Cable } \\ 16.40 \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { Cable } \\ 16.40 \mathrm{ft} \end{gathered}$	2 wires 1.15 ft	2 wires 9.84 ft
Activation distance	0.31 in	0.31 in	0.31 in	0.31 in	0.20in	0.20in	0.20in	0.20in	0.47in	0.47in
Associated magnet	P2000100	P2000100	P2000100	P2000100	P3000100	P3000100	P3000100	P3000100	P6250000	P6250000
LED option	yes	yes	no	yes	no	yes	no	yes	no	no
Working temperature	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$

c Tus ul products

ASSOCIATED CODED MAGNETS

REED MAGNETIC SENSORS

Screw position SENSORS

П®『 Solutions

Connect our Reed sensors to a communication system so that they are autonomous and networked. (see page 41)

General purpose sensors (screw-mounted), for industrial and domestic uses:
\rightarrow Window sensors $\quad \rightarrow$ Presence of protective covers
\rightarrow Door opening $\quad \rightarrow$ White goods.

Product reference	PAA10060	PAAI 1202	PAB10020	PLA10100	PLA10160	PLA11208	PLA12430
Contact status	NO	NO	NC	NO	NO	NO	NO
Connection type	2 wires / FASTON	2 wires	2 wires + HE14 connector	cable	2 wires	cable	cable
Cable length	2.28 ft	0.90 ft	0.52 ft	32.81 ft	1.18 ft	2.62 ft	9.84 ft
Max. switching power	12 VA	12 VA	3VA	12VA	12 VA	12VA	12VA
Max. switching voltage	$\begin{aligned} & \text { 48VAC } \\ & 100 \mathrm{VDC} \end{aligned}$	$\begin{gathered} \text { 48VAC } \\ 100 \mathrm{VDC} \end{gathered}$	$\begin{gathered} \text { 48VAC } \\ 100 \mathrm{VDC} \end{gathered}$	110VAC 200VDC	$\begin{aligned} & \text { 48VAC } \\ & 100 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & 250 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & 250 \mathrm{VDC} \end{aligned}$
Max. switching current	0.4 A	0.4 A	0.25A	0.5A	0.4 A	0.4 A	0.4 A
Activation distance	0.59in with P6250000	$\begin{aligned} & \text { 0.59in with } \\ & \text { P6250000 } \end{aligned}$	0.71 in with P6250000	$\begin{aligned} & \text { 0.39in with } \\ & \text { P6250000 } \end{aligned}$	$\begin{aligned} & \text { 0.59in with } \\ & \text { P6250000 } \end{aligned}$	0.63 in with P6250000	0.47 in with P6250000
Working temperature	-40 to $+85^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$
Dimensions in inches	$0.91 \times 0.55 \times 0.24$	$0.91 \times 0.55 \times 0.24$	$0.91 \times 0.55 \times 0.24$	$1.26 \times 0.59 \times 0.24$			
Fixing screws distance	0.55 in	0.55 in	0.55 in	0.67 in	0.67 in	0.67 in	0.67in

Product reference	PLA13701	PLA13730	PLA13750	PLA43403	PLB10060	PLB16701	PLC10040	PLC13701
Contact status	NO	NO	NO	No	NC	NC	Change-over	Change-over
Connection type	cable	3 wires						
Cable length	0.33 ft	9.84 ft	16.40 ft	0.98 ft	9.84 ft	0.33 ft	4.92 ft	0.33 ft
Max. switching power	12VA	12VA	12VA	100VA	12VA	12VA	$\begin{aligned} & \text { NF: } 3 \mathrm{VA} \\ & \text { NO: } 8 \mathrm{VA} \end{aligned}$	$\begin{aligned} & \mathrm{NF}: 3 \mathrm{VA} \\ & \text { NO: } 8 \mathrm{VA} \end{aligned}$
Max. switching voltage	110VAC 200VDC	$110 \mathrm{VAC}$ 200VDC	$110 \mathrm{VAC}$ 200VDC	230VAC 350VDC	110VAC 200VDC	$\begin{aligned} & 110 \mathrm{VAC} \\ & \text { 200VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & 100 \mathrm{VDC} \end{aligned}$	48VAC 100VDC
Max. switching current	0.4 A	0.4 A	0.4 A	1A	0.4 A	0.4 A	0.25A	0.25A
Activation distance	$\begin{aligned} & \text { 0.39in with } \\ & \text { P6250000 } \end{aligned}$	$\begin{aligned} & \text { 0.39in with } \\ & \text { P6250000 } \end{aligned}$	$\begin{aligned} & \text { 0.39in with } \\ & \text { P6250000 } \end{aligned}$	$\begin{aligned} & \text { 0.47in with } \\ & \text { P6250000 } \end{aligned}$	$0.16<d<0.47 \mathrm{in}$ (magnet provided)	0.16 in (magnet provided)	$\begin{aligned} & 0.55 \text { in with } \\ & \text { P6250000 } \end{aligned}$	$\begin{aligned} & \text { 0.39in with } \\ & \text { P6250000 } \end{aligned}$
Working temperature	-40 to $+100^{\circ} \mathrm{C}$	$\begin{aligned} & -40 \text { to } \\ & +100^{\circ} \mathrm{C} \end{aligned}$						
Dimensions in mm	$32 \times 15 \times 6.8$							
Fixing screws distance	0.67in	0.67in	0.67in	0.67in	0.67in	0.67 in	0.67 in	0.67 in

REED MAGNETIC SENSORS

Sensor with metal
housing

Screw sensors with safety loop (Alarms)

UL approved sensors

PLA10101U	PLA12435U	PLC12425U
NO	NO	Change-over
2 wires	2 wires	Cable
1.31 ft	1.15 ft	0.35 ft
10VA	10VA	$\begin{aligned} & \text { NC : 3VA } \\ & \text { NO: 8VA } \end{aligned}$
$\begin{gathered} 48 \mathrm{VAC} \\ 100 \mathrm{VDC} \end{gathered}$	$\begin{gathered} \text { 48VAC } \\ 100 \mathrm{VDC} \end{gathered}$	48VAC 100VDC
0.5A	0.4 A	0.5A
$\begin{aligned} & \text { 0.39in with } \\ & \text { P6250000 } \end{aligned}$	0.47 in with P6250000	$\begin{aligned} & \text { 0.39in with } \\ & \text { P6250000 } \end{aligned}$
-40 to $+85^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$	-25 to $+85^{\circ} \mathrm{C}$
$1.26 \times 0.59 \times 0.24$		
0.67 in		

REED MAGNETIC SENSORS

TUBULAR POSITION SENSORS

П®『 Solutions

Connect our Reed sensors to a communication system so that they are autonomous and networked. (see page 41)

General purpose sensors (screw-mounted), for industrial and domestic uses:
\rightarrow Window sensors
\rightarrow Presence of protective covers
\rightarrow Door opening
\rightarrow White goods.

Product reference	PTA10440	PTA11235	PTA12401	PTA13730	PTA50010	PTB13702	PTC13730
Contact status	NO	NO	NO	NO	NO	NC	Change-over
Max. switching power	12VA	12VA	12VA	12VA	12VA	3VA	NC: 3VA NO: 8VA
Max. switching voltage	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	48VAC 100VDC	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$
Max. switching current	0.4 A	0.4A	0.4 A	0.4 A	0.4 A	0.25A	0.25A
Connection type	2 wires 1.64 ft	Cable 8.20 ft	2 wires 0.33 ft	2 wires 9.84 ft	$\begin{gathered} 2 \text { wires } \\ 0.33 \mathrm{ft} \end{gathered}$	2 wires 0.66 ft	Cable 9.84 ft
Activation distance with P6250000	0.28in	0.59in	0.55in	0.39in	0.71 in	0.55	0.28in
Working temperature	-40 to $+85^{\circ} \mathrm{C}$						
Dimensions in inches	$\varnothing 0.24 \times 1.18$ Plastic	$\varnothing 0.24 \times 1.18$ Plastic	$\varnothing 0.24 \times 1.18$ Plastic	$\varnothing 0.24 \times 1.18$ Plastic	$\varnothing 0.24 \times 0.98$ Plastic	$\not 0.24 \times 1.18$ Plastic	$\begin{gathered} \not \varnothing 0.24 \times 1.18 \\ \text { Plastic } \end{gathered}$

Product reference	PTA10490	PTPA0030	PTPA0100	PTPA0110	PTPA0230	PTPB0011
Contact status	NO	1NO	1NO	1NO	1NO	1NC
Max. switching power	10VA	12VA	12VA	12VA	12VA	12VA
Max. switching voltage	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$
Max. switching current	0.4A	0.5A	0.5A	0.5A	0.5A	0.5A
Connection type	2 wires 2.62 ft	2 wires 9.84 ft	Connectors	Connectors	2 wires 9.84 ft	2 wires $0.26 \mathrm{ft}+$ FASTON
Activation distance	0.63 in with P6250000	0.47 in (magnet provided)	0.47in (magnet provided)	consult us	1.18in (magnet provided)	0.39 (magnet provided)
Working temperature	-40 to $+120^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$				
Dimensions in inches	$\emptyset 0.24 \times 1.61$ Raw brass	$\emptyset 0.43 \times 1.10$ Plastic	$\emptyset 0.43 \times 1.10$ Plastic	$\emptyset 0.43 \times 1.10$ Plastic	$\emptyset 0.91 \times 1.06$ Plastic	$\emptyset 0.91 \times 1.10$ Plastic

REED MAGNETIC SENSORS

PTI M8 housing

Typical applications:
\rightarrow Speed sensors,
\rightarrow Presence/position/motion sensors.

Product reference	PTI40003	PT140020	PT140030	PTI50020	PTIC0030	PTI10122	PT160020	PTI70020
Contact status	1NO / A form	1NO / A form	1NO / A form	1NC / B form	Change-over / C form	1NO / A form	1NO / A form	1NC / B form
Max. switching power	12VA	12VA	12VA	5W	5W	10VA	12VA	5W
Max. switching voltage	$\begin{aligned} & \text { 110VAC } \\ & \text { 200VDC } \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & \text { 200VDC } \end{aligned}$	110VAC 200VDC	$\begin{aligned} & \text { 110VAC } \\ & \text { 175VDC } \end{aligned}$	175VDC	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	110VAC 200VDC	$\begin{aligned} & \text { 110VAC } \\ & \text { 175VDC } \end{aligned}$
Max. switching current	0.5A	0.5A	0.5A	0.25A	0.25A	0.10A	0.5A	0.25A
Connection type	Cable 0.98 ft	Cable 6.56 ft	Cable 9.84 ft	Cable 6.56 ft	Cable 9.84 ft	Cable 72.18 ft	Cable 6.56 ft	Cable 6.56 ft
Activation distance	$\begin{aligned} & \text { 0.47in with } \\ & \text { magnet } \\ & \text { PT505000 } \end{aligned}$	0.47 in with magnet PT505000	$\begin{aligned} & \text { 0.47in with } \\ & \text { magnet } \\ & \text { PT505000 } \end{aligned}$	$\begin{aligned} & \text { 0.28in with } \\ & \text { magnet } \\ & \text { PT505000 } \end{aligned}$	0.59 in with magnet UR801000	0.47 in with magnet PT505000	0.47 in with magnet UR801000	0.28 in with magnet UR801000
Working temperature	-40 to $+85^{\circ} \mathrm{C}$							
Dimensions in inches	$\text { M8-Lg } 1.22$ Plastic	$\begin{gathered} \text { M8 - Lg } 1.22 \\ \text { Plastic } \end{gathered}$	$\text { M8-Lg } 1.22$ Plastic	$\text { M8-Lg } 1.22$ Plastic	$\begin{gathered} \text { M8 - Lg } 1.22 \\ \text { Plastic } \end{gathered}$	$\begin{gathered} \text { M8 - Lg } 1.57 \\ \text { Stainless Steel } \end{gathered}$	$\begin{gathered} \text { M8 - Lg } 1.57 \\ \text { Stainless Steel } \end{gathered}$	$\begin{gathered} \text { M8 - Lg } 1.57 \\ \text { Stainless Steel } \end{gathered}$

PTA / PDC M10 housing

Typical applications:
\rightarrow Speed sensors,
\rightarrow Presence/position/motion sensors.
\rightarrow Sensors with M12 housing page 48

Product reference
Contact status
Max. switching power
Max. switching voltage
Max. switching current
Connection type
Activation distance
Working temperature
Dimensions in inches

PTA80020

PTA90160

$1 \mathrm{NO} / \mathrm{A}$ form	$1 \mathrm{NO} / \mathrm{A}$ form	Ch
12 VA	12 VA	
110 VAC	48 VAC	
200 VDC	100 VDC	
0.5 A	0.4 A	
Cable 6.56 ft	Cable 4.92 ft	
0.98 in with magnet	0.47 in with magnet	0.7
PT810000	P6250000	
-25 to $+70^{\circ} \mathrm{C}$	-40 to $+125^{\circ} \mathrm{C}$	
M10x0.04 $-\mathrm{Lg} \mathrm{1.73}$	M10 -Lg 1.57	M
Stainless Steel	Raw brass	

| Change-over / C form | Be |
| :---: | :---: | :---: |
| 60 VA | |
| 250 VAC | |
| 1 A | |
| Cable 9.84 ft | |
| 0.79in with magnet
 UR144360 | |
| -40 to $+75^{\circ} \mathrm{C}$ | |
| M10x0.04-Lg 3.35 | |
| Plastic | |

Bistable / L form	Change-over / C form	
	100 VA	NC : 3W, NO $: 8 \mathrm{~W}$
	250 VAC	48 VAC
	1 A	0.25 A
Cable 9.84 ft	Cable 0.33 ft	
	1.18 in with magnet UP802008	0.79 in with magnet
	UR124540	
	-40 to $+75^{\circ} \mathrm{C}$	-25 to $+85^{\circ} \mathrm{C}$
M10x0.04 -Lg 3.35	M8x0.04 -Lg 1.61	
Plastic	Raw brass	

Celais

SENSORS FOR LIFTS

AND OTHER INDUSTRIAL APPLICATIONS

Product reference	PCA22330	PCA36720	PCC12320	PCC26720	PCLA3030	PC2A2330	PC3A2330
Contact status	1NO / A form	1NO / A form	Change-over / C form	Change-over / C form	Bistable / L form	2NO / A form	3NO / A form
Max. switching power	70VA	100VA	3VA	60VA	100VA	70VA	70VA
Max. switching voltage	300VAC	250VAC	100VAC	400VAC	250VAC	300VAC	300VAC
Max. switching current	0.5A	3A	0.25A	1A	3A	0.5A	0.5A
Connection type	Cable 9.84 ft	Cable 6.56 ft	Cable 6.56 ft	Cable 6.56 ft	Cable 9.84 ft	Cable 9.84 ft	Cable 9.84 ft
Activation distance	0.79in with UR144361	0.59 in with UR144361	0.98 in with UR144361	0.71 in with UR144361	1.18 with UP081508	0.79 in with UR144361	0.79 in with UR144361
Working temperature	-25 to $+75^{\circ} \mathrm{C}$	-40 to $+75^{\circ} \mathrm{C}$	-40 to $+75^{\circ} \mathrm{C}$				
Dimensions inches	M12 L 3.15 Plastic housing						

Sensors for lifts
 \rightarrow Lift position detection
 \rightarrow Door opening control

celduc® relais range includes Reed switch or "all Electronic" magnetic sensors which use Hall effect sensors or magneto resistors. It is important to clearly define the "sensor + magnet" combination in the terms of use.
celduc® relais is here to help you choose the right product for your application. We can supply you with sensors as well as magnets/laminated plastic magnets.
Advantages of celduc® relais sensors:

- resistant to heat, cold air, humidity, dust, etc. in their operating environment
- exceptional reliability
- extensive sensing range
- good withstand capacity to impacts
- IP67

Product reference	PMG12921	PMG12924	PMG12930S	PMG13051
Contact status	NO	NO	NO bistable	NC
Max. switching power	100VA	120VA	60VA	30VA
Max. switching voltage	230VAC	250VAC	$\begin{aligned} & \text { 110VAC } \\ & \text { 230VDC } \end{aligned}$	$\begin{aligned} & \text { 110VAC } \\ & \text { 230VDC } \end{aligned}$
Max. switching current	3A	3A	1A	0.5A
Connection type	22.97 ft	22.97 ft	23.95 ft	21.33 ft
Activation distance	1.06 in with UP302010	1.06 in with UP302010	$0.28<\mathrm{D}<1.57 \mathrm{~mm}$ with UP302010	1.06 in with UP302010
Working temperature	-25 to $+85^{\circ} \mathrm{C}$			
Dimensions in inches	M14 $\times 2.95$	M14 $\times 2.95$	$3.15 \times 1.18 \times 1.18$	M14 $\times 2.95$

REED MAGNETIC SENSORS / HALL EFFECT

Sensors for LAYOUT ON PCB

Overmolded reed switch sensors for mounting on PCBs in complete safety (no switch embrittlement). \qquad

Product reference	PHAO1200	PHA11200	PHC13700	
Contact status	NO	NO	Change-over	
Max. switching power	12VA	12VA	NC: 3VA / NO : 8VA	
Max. switching voltage	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	
Max. switching current	0.4 A	0.4A	0.4 A	
Activation distance with U6250000	0.71 in	0.67in	0.43in	$=$
Working temperature	-40 to $+100^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$	-40 to $+100^{\circ} \mathrm{C}$	
Dimensions in inches	$0.91 \times 0.16 \times 0.12$	$0.91 \times 0.16 \times 0.12$	$0.91 \times 0.16 \times 0.12$	Position

Hall effect SENSORS

celduc $®$ relais has two ranges of electronic sensors:
\rightarrow Hall effect sensors that require an external magnet
\rightarrow Steel gear tooth magnetic sensors.

Product reference	PTE11320	PTE11321	PTE21320	PTE21321	PTE31320	PTE31321	PTE41320	PTE41321
Contact status	Hall effect PNP	Hall effect NPN	Gear tooth PNP	Gear tooth NPN	Hall effect PNP	Hall effect NPN	Gear tooth PNP	Gear tooth NPN
Cable length	cable 6.56 ft							
Activation distance	0.75 in	0.75 in	0.04 in	0.04 in	0.67	0.67	0.04 in	0.04 in
Max. switching voltage	6-48VAC							
Max. switching current	0.4A							
Working temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$							
Dimensions in inches	Plastic housing M12 1.30				Raw brass housing M12 1.30			
Associated coded magnet	PT810000	PT810000			PT810000	PT810000		

APPLICATIONS

\rightarrow Counting

\rightarrow Industry
\rightarrow Lifts
\rightarrow Speed sensors
\rightarrow Ele Direct detection
\rightarrow Tractors...
 non-magnetic material

Ferro-magnetic material

Detection of ferro-magnetic (counting,...)

Gear tooth sensor

REED MAGNETIC SENSORS

LeVEL \& FLOW SENSORS

- ${ }^{\circ}$ 『 Solutions

Connect our Reed sensors to a communication system so that they are autonomous and networked. (see page 41)
celduc relais $®$ has a wide range of standard or specific level and flow sensors with Reed switches.
Since our sensors are available in various plastic and stainless steel housings, we can accommodate a wide range of applications, depending on the chemicals and operating temperatures used.
For specific applications, (e.g.: potentiometric scale, special level sensors) please contact us: we can develop products to meet your needs.

(1) Possible to invert the functions by reversing the float (2) Available in an approved version for ATEX zones (see page 53)							
Product reference		PTF01070	PTFA1015	PTFA1103 (1) PTFA1104 (1)	PTFA5001 (1)	PTFA1210	PTFA2115(1)(2) PTFA2115R
Mounting		Vertically	Vertically	Vertically	Vertically	Vertically High and low level	Vertically
Contact status (float down)		1NO	1NO	$\begin{aligned} & \text { 1NC (PTFA1103) } \\ & \text { 1NO (PTFA1104) } \end{aligned}$	1NC	$1 \mathrm{NO}+\mathrm{NC}$	1NO
Connection type		2 wires 2.76in	2 wires 4.92ft	2 wires 0.98 ft	Cable 6.56ft	$\begin{gathered} \text { Cable (3 wires) } \\ 0.98 \mathrm{ft} \end{gathered}$	2 wires 4.92 ft
Material	Housing	Polyamide 6/6 resin with glass fiber content	Polyamide 6/6 resin with glass fiber content	Polypropylene	Polypropylene	Polyamide	Stainless steel
	Float	Polypropylene	Polypropylene			Polyurethane	
Liquid compatibility		Water	Water	1	1	2	3
Float travel		0.39in	0.67	0.35	0.39 in	1.89in	0.31 in
Max. switching power		10VA	10VA	10VA	50VA	$\begin{gathered} \text { Top : 10VA } \\ \text { Bottom : 3VA } \end{gathered}$	50VA
Max. switching voltage		$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 48VAC } \\ & \text { 100VDC } \end{aligned}$	$\begin{aligned} & \text { 230VAC } \\ & \text { 350VDC } \end{aligned}$	$\begin{aligned} & \text { 230VAC } \\ & \text { 350VDC } \end{aligned}$	Top : 200Vdc Bottom : 100Vdc	$\begin{aligned} & \text { 230VAC } \\ & 350 \mathrm{VDC} \end{aligned}$
Max. switching current		0.5A	0.5A	0.5A	0.5A	Top: 0.5A Bottom : 0.25A	0.5A
Density mini		0.8	0.75	0.7	0.9	0.6	0.75
Working temperature		$0 / 70^{\circ} \mathrm{C}$	$0 / 70^{\circ} \mathrm{C}$	$-10 / 80^{\circ} \mathrm{C}$	$-10 / 80^{\circ} \mathrm{C}$	$-10 / 85^{\circ} \mathrm{C}$	$0 / 100^{\circ} \mathrm{C}$
Thread		M8 x 0.04in	3/8" threading UNC 16 per inch	1/8" GAS 28 per inch	M8 x 0.04in	$3 / 8^{\prime \prime}$ threading UNC 16 per inch	M10 $\times 1$

LIQUIDS COMPATIBILITY

Compatible with acid : acetic, citric, formic, lactic, nitric diluted, phosphoric, sulphuric diluted ; soda ; alcohols : ethanol, methanol, propanol ; glycol ; mineral oil ; water
Not compatible with the following solvents : chloroforme, methylene chloride, trichloroethylene, toluene ; hard acids.
\rightarrow Compatible with fuels, engine oil, kerosene, lubricaring oil, mineral oil, vegetal oil,
\rightarrow Not compatible with almost all acids, methylene chloride
\rightarrow Acceptable resistance to water.
\rightarrow Compatible with almost all the liquids except hard acids.

REED MAGNETIC SENSORS

OPERATION

Thanks to its magnetic field, a float fitted with one or more magnets moves with the fluid and activates a hermetically sealed REED contact.

ADVANTAGES

The following advantages ensure user safety, repeatability, accuracy and operational reliability combined with low maintenance.
\rightarrow A single moving part: the float.
\rightarrow Since Reed switches are only activated by a magnetic field, there is no wear and tear.
\rightarrow Because Reed switches are hermetically sealed, there are no ingress protection issues.

(2) Available in an approved version for ATEX zones (see page 53)

APPLICATIONS

HEATING (air-conditioning, heaters, humidifiers) To detect the tank's water level.

DOMESTIC EQUIPMENT (electronic toilet flush system, solar energy) To detect the water level.
FOOD INDUSTRY (coffee machines, vending machines)
\rightarrow The sensor provides information which activates a pump to maintain the water level.
MEDICAL EQUIPMENT (sterilizers)
\rightarrow Water level
WATER TREATMENT (water purifiers, water makers)
The sensor is used to detect the required supply level.
SWIMMING POOLS (water treatment, water heating)
\rightarrow Water level and flow.
AUTOMOBILE (to check water levels, ABS brake fluid, presence of water in fuel, washer fluid)

\rightarrow To detect the various liquid levels.
VARIOUS INDUSTRIES (self-service photo booths, electric car wash, etc.)

REED MAGNETIC SENSORS

Sensors for WINDOW FRAMES

]®T Solutions

Connect our Reed sensors to a communication system so that they are autonomous and networked. (see page 41)

This new range has been developed to detect the position of a window: open or closed (monitoring opening).
Typical applications are centralized building management systems, air conditioning and heating. Main advantages are:
\rightarrow Installation and connection time reduced by half: locking pluggable connectors, clip-mounted (no fixing screws)
\rightarrow Open, closed contact, inverter, safety loop
\rightarrow Dust and damp proof contact.

2
Connect

3
Install

4

Product reference		PWA01501	PWB01501	PWA11500	PWB11500	PWC01500
Type of contact		NO	NC	$\begin{gathered} \text { NO + safety } \\ \quad \text { loop } \end{gathered}$	NC + safety loop	Change-over
Contact status	Window open	$\bigcirc \longrightarrow$	$\bigcirc \bigcirc$	0	0	$\square \longrightarrow$
	Window open	$\bigcirc \bigcirc$	$\bigcirc \longrightarrow$	0	0	$0-0$
Connection type		Cable + PHR2 connector (not included)		Cable + PHR4 connector (not included)		
Cable length		Ref. 2YB2 Ref. 2YB2	$: 9.84 \mathrm{ft}$ 16.40 ft 32.80 ft $: 42.65 \mathrm{ft}$ 49.21 ft 82.02 ft	Ref. 2YB40080 : 26.25 ft		
Max. switching power		10VA				
Max. switching voltage		48VAC				
Max. switching current		Depends on magnet used - see our technical data-sheet				
Activation distance		Depend on the magnet - see technical data-sheet				
Working temperature		-40 to $+70^{\circ} \mathrm{C}$				
Dimensions (inches)		$1.85 \times 0.35 \times 0.35$				

ATEX SENSORS

celduc® relais is a certified ATEX product manufacturer under number INERIS 04ATEXQ406.
celduc® relais also has an EC type examination certificate, number INERIS 04ATEX0105.
Group II for surface industries.
Marking example : for part number PL. $1 \ldots$.. Ex (for other part numbers, please refer to the respective data sheet)
CE0080
II 2 GD
Ex mb IIC T6 Gb Ex tb IIIC IP67 T85 ${ }^{\circ} \mathrm{C}$ Db

Type *) of devices :
1 in zone 0 (continuous risk) 2 in zone 1 (intermittent risk)

I®『 Solutions

Connect our Reed sensors to a communication system so that they are autonomous and networked. (see page 41)
I 1 GD Ex ia IIB T6 Ga Ex ia IIIB $\mathrm{T} 85^{\circ} \mathrm{C}$ Da

Gaz: G or Dust : D
Protection " m " for zone 1 and " i " for zone 0
Temperature class : $\mathrm{T} 6\left(85^{\circ} \mathrm{C}\right) \mathrm{T} 4\left(135^{\circ} \mathrm{C}\right)$ or $\mathrm{T} 3\left(200^{\circ} \mathrm{C}\right)$
Cables length 5 m or 10 m .

	Coded magnet P3000100 to be ordered separately						
Product reference	PFA2125Ex	PFA3125Ex	PSS1905Ex	PSS5905Ex	PSS7905Ex	PTA6125Ex	PTA9125EX
Contact status	1NO	1NO	1NO	$1 \mathrm{NO}+1 \mathrm{NC}$	2NO	1NO	1NO
Temperature group	T6	T6	T4	T4	T4	$\begin{aligned} & \text { T4/T6 or } \\ & \text { T3/T6* } \end{aligned}$	$\begin{aligned} & \text { T4/T6 or } \\ & \text { T3/T6* } \end{aligned}$
Max switching power	$\begin{aligned} & 10 \mathrm{~W} \\ & 12 \mathrm{VA} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~W} \\ & 12 \mathrm{VA} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~W} \\ & 12 \mathrm{VA} \end{aligned}$	3VA	3VA	$\begin{aligned} & 10 \mathrm{~W} \\ & 12 \mathrm{VA} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~W} \\ & 12 \mathrm{VA} \end{aligned}$
Max. switching voltage	60VDC						
Max. switching current	0.4A	0.4A	0.1A	0.1A	0.1A	0.4A	0.4A
Cable length	cable 16.40ft						
Working temperature	-40 to $+80^{\circ} \mathrm{C}$		-25 to $+85^{\circ} \mathrm{C}$			-40 to $+200^{\circ} \mathrm{C}$	-20 to $+200^{\circ} \mathrm{C}$
Housing materiat	Stainless steel	Polypropylene	Plastic			Brass	
Dimensions in inches	$\emptyset 1.10 \times 2.36$	$\varnothing 1.10 \times 3.54$	2×0.63			$\varnothing 0.24 \times 1.61$	M10

[^1]
CONTROL MAGNETS

Range of standard permanent magnets required to activate our magnetic sensors.
To control Reed switch or Hall effect magnetic sensors, a magnet must be used.
Choose from one of celduc® relais' 3 different ranges of magnets, these are differentiated as follows: operating temperature, geometry and corrosion resistance.

	Material	Max. operating temperature	Temperature drift coefficient (reversible)	Corrosion resistance	
	Alnico	$500^{\circ} \mathrm{C}$	$\begin{gathered} \text { very low } \\ \left(-0.025 \% \text { per }{ }^{\circ} \mathrm{C}\right) \end{gathered}$	Good resistance	generally supplied in bars whose length must be at least 4 times the diameter
	Ferrite	$250^{\circ} \mathrm{C}$	high (-0.20% per $\left.{ }^{\circ} \mathrm{C}\right)$	Very good resistance	generally supplied as block rectangular type, discs or rings
	Samarium Cobalt (SmCo)	$250^{\circ} \mathrm{C}$	low (-0.04\% per ${ }^{\circ} \mathrm{C}$)	Very good resistance	generally supplied in blocks or pieces
Rare earth	Neodymium Iron Bore (NdFeBo)	80 to $160^{\circ} \mathrm{C}$ (see data-sheets)	low (-0.10\% per ${ }^{\circ} \mathrm{C}$)	Bad resistance (must have tin or nickel coating)	generally supplied in blocks or pieces

We at celduc ${ }^{\circledR}$ relais are always here to help you choose the best magnet/sensor combination for your needs.

COATED MAGNETS

Product reference	For sensors	Bare magnet dimensions in inches	Dimensions in inches	Fig	Product reierence	Material	Dimensions in inches	Fig
P0540000	PSC	$\emptyset 0.20 \times 0.79$	$2 \times 0.63 \times 0.28$	1	U315P003	Alnico5	$\emptyset 0.12 \times 0.59$	1
					U4200000	Alnico5	$\emptyset 0.16 \times 0.79$	1
PA320000	PA	$\varnothing 0.12 \times 0.79$	$0.91 \times 0.59 \times 0.24$	2	U6250000	Alnico5	$\emptyset 0.24 \times 0.98$	1
					U8300000	Alnico5	$\emptyset 0.31 \times 1.18$	1
P2000100	PXS	$\emptyset 0.39 \times 0.39$	$2 \times 0.63 \times 0.28$	3	UB105000	Alnico5	$\emptyset 0.39 \times 1.97$	1
P3000100	PSS	$\emptyset 0.12 \times 0.16$	$2 \times 0.63 \times 0.28$	1				
					UF207760	Ferrite	$0.79 \times 0.28 \times 0.24$	2
P3150000	PA, PH, PL, PT	$\emptyset 0.12 \times 0.59$	$1.26 \times 0.59 \times 0.24$	4	UF221105	Ferrite	$\emptyset 0.87 \times 0.43 \times 0.20$	3
P4200000	PA, PH, PL, PT	$\varnothing 0.16 \times 0.79$	$1.26 \times 0.59 \times 0.24$	4	UF341605	Ferrite	$\emptyset 1.34 \times 0.63 \times 0.20$	3
P6250000	PA, PH, PL, PT	$\varnothing 0.24 \times 0.98$	$1.26 \times 0.59 \times 0.24$	4	UZ189538	Ferrite	$0.71 \times 0.35 \times 0.12$	2
P4159000	PB or PLA	$\emptyset 0.12 \times 0.59$	$2 \times 0.31 \times 0.43$	5	UP051508	Plastoferrite	$1.97 \times 0.59 \times 0.32$	4
P4160000	PB or PLA	$\emptyset 0.20 \times 0.98$	$2 \times 0.31 \times 0.43$	5	UP071508	Plastoferrite	$2.76 \times 0.59 \times 0.32$	4
					UP102008	Plastoferrite	$3.94 \times 0.79 \times 0.32$	4
PT505000	PTI5 plastic	$\emptyset 0.20 \times 0.20$	M8x1 Lg 1.22	6	UP301508	Plastoferrite	$11.81 \times 0.59 \times 0.32$	4
					UP302008	Plastoferrite	$11.81 \times 0.79 \times 0.32$	4
PT810000	PTE	$\varnothing 0.31 \times 0.39$	M12x1 Lg 1.22	7				
					UR101000	NdFeBo	$\varnothing 0.39 \times 0.39$	6
PW520000 1 5	PWA, PWB, PWC	$\emptyset 0.20 \times 0.79$	$1.85 \times 0.35 \times 0.35$		UR102540	NdFeBo	$\emptyset 0.39 \times 0.16 \times 0.08$	5
				8	UR124540	NdFeBo	$\emptyset 0.47 \times 0.16 \times 0.08$	5
					UR144361	NdFeBo	$\emptyset 0.55 \times 0.24 \times 0.16$	5
					UR120500	NaFeBo	$\varnothing 0.47 \times 0.20$	6
					UR122000	NdFeBo	$\emptyset 0.47 \times 0.79$	6
					UR304000	NdFeBo	$\emptyset 0.12 \times 0.16$	6
					UR315000	NdFeBo	$\emptyset 0.12 \times 0.59$	6
	6	7 -			UR503000	NdFeBo	¢ 0.20×0.12	6
					UR604010	NdFeBo	$\emptyset 0.24 \times 0.12$	6
					UR801000	NdFeBo	¢0.31×0.39	6

Reed Switches

Detecting motion, positions and levels in harsh environments without any mechanical links between the moving parts, maintenance-free and subject to a magnetic field. This is the Reed contact's daily challenge.
These contacts are used in a wide range of sectors, such as electronic banking, space, automation, telecoms, etc.

Reed Relays in D|P enclosure

The most popular and the most industrious in our range. It has all contact combinations. It is designed to switch PLC inputs, signals from sensors or safety devices.

Internal scheme (top view)	Product reference	Contact status	Characteristics of the switch			Characteristics of the coil		Specifications	Dimensions in mm
			Max. switching voltage	Max. switching current	Max. switching power	Nominal voltage	R. coil at $20^{\circ} \mathrm{C}$		
	D31A3100	1NO	100VDC	0.5A	10VA	5VDC	500Ω	-	$19.1 \times 6.6 \times 6.4$
	D31A3110		100VDC	0.5A	10VA	5VDC	500Ω	diode	
	D31A5100		100VDC	0.5A	10VA	12VDC	$1 \mathrm{k} \Omega$	-	
	D31A7100		100VDC	0,5A	10VA	24VDC	2150Ω	-	
	D31A7110		100VDC	0.5A	10VA	24VDC	2150Ω	diode	
	D31B3100	1NC	100VDC	0.5A	10VA	5VDC	500Ω	diode	$19.1 \times 6.6 \times 6.4$
	D31B5100		100VDC	0.5 A	10VA	12VDC	500Ω	diode	
	D31C2100	Changeover	100VDC	0.25A	3VA	5VDC	200Ω	-	$19.1 \times 6.6 \times 6.4$
	D31C2110		100VDC	0.25 A	3VA	5VDC	200Ω	diode	
	D31C5100		100VDC	0.25 A	3VA	12VDC	500Ω	-	
	D31C5110		100VDC	0.25 A	3VA	12VDC	500Ω	diode	
	D31C7100		100VDC	0.25A	3VA	24VDC	2150Ω	-	
	D31C7110		100VDC	0.25 A	3VA	24VDC	2150 ת	diode	
	D32A3100	2NO	100VDC	0.5A	10VA	5VDC	200Ω	-	$19.1 \times 6.6 \times 6.4$
	D32A3110		100VDC	0.5A	10VA	5VDC	200Ω	diode	
	D32A5100		100VDC	0.5A	10VA	12VDC	500Ω	-	
	D32A7100A		100VDC	0.5A	10VA	24VDC	2150Ω	-	
	D71A2100	1NO	100VDC	0.5A	10VA	5VDC	380Ω	-	$19.1 \times 6.6 \times 5.5$
	D71A2110			0.5A	10VA	5VDC	380Ω	diode	
	D71A5100		100VDC	0.5A	10VA	12VDC	530Ω		

Reed Relays in SIP enclosure

Relays for high density component circuits : alarms, testers, industrial control.

Internal scheme

Product refe-	$\begin{array}{c}\text { Contact } \\ \text { rence }\end{array}$
status	

D41A5100L

Characteristics of the switch		
Max. switching Max. switching voltage current	Max. switching power	
100VDC	0.5 A	10VA

Characteristics of the coil

D41A5100L 1 NO | IOOVDC | 0.5 A | 10 VA |
| :--- | :--- | :--- |

Nominal	R. coil	Specifications
voltage	at $20^{\circ} \mathrm{C}$	
12 VDCC	$1 \mathrm{k} \Omega$	diode

Dimensions in mm 19x(5 ou 6)x7.5

REED RELAYS \& SWITCHES

The products on this page do not represent all of our range and corresponding options. If you cannot find a product that meets your needs, please contact us.

High voltage relay

The withstand voltage between the contacts is greater than 10KVDC. The withstand voltage between the coil and the contacts is greater than 14VDC.

Product reference	Contact status	Max. switching voltage	Max. switching current	Max. switching power	Nominal voltage	R. coil at $20^{\circ} \mathrm{C}$	Specifications	Dimensions in mm
R1329L00	1NO	7500 VDC	0.2A	50VA	12VDC	300Ω		$65 \times 15.2 \times 16.9$
R1329L87		7500VDC	0.2A	50VA	12VDC	300Ω	without fixing screw	
R1343L00		7500VDC	0.2 A	50VA	24VDC	1200Ω		
R1343L13		5000 VDC	0.2 A	50VA	24VDC	1200Ω		

Reed F \& R Relay range

Relays with ferro-magnetic shield in for telecom type applications. \qquad

Internal scheme

t status	Max. switching voltage	Max. switching current	Max. switching power
	250VDC	0.4 A	14VA
	500VDC	1A	50VA
	500VDC	1A	50VA
IO	250VDC	0.4 A	14VA
O	250VDC	0.4 A	14VA
rcury	500VDC	1A	50VA
change-	500VDC	1A	50VA
switch	500VDC	1A	50VA

Characteristics of the coil

Nominal voltage	R. coil at $20^{\circ} \mathrm{C}$
12VDC	2145Ω
12VDC	$1000 \mathrm{k} \Omega$
24VDC	2300Ω
5VDC	345 ת
24VDC	7845 ת
5VDC	75Ω
12VDC	350Ω
24VDC	1350 ת

Specifications	Dimensions in mm
comes in coatedversion réf. F81Ax100	$30 \times 9.5 \times 10$
Position vertically	$30 \times 9.5 \times 10$
Coil/contact insulation 4KV	$30 \times 9.5 \times 11$
Position vertically	$30 \times 16.5 \times 11$

Characteristics of the switch

| Max. switching |
| :---: | :---: | :---: | :---: | :---: |
| Voltage |

Max. switching
current

100VDC \begin{tabular}{c}
Max. switching

power

\quad

Characteristics of the coil

100VVDC

voltage
\end{tabular}\(\left|\begin{array}{c}R. coil at

20^{\circ} \mathrm{C}\end{array}\right|\)

CATALOGUES AND LEAFLETS AVAILABLE ON REQUEST

CATALOGUES AND GENERAL INFORMATION LEAFLETS

APPLICATIONS BROCHURES

－RAILWAY
－PLASTICS PROCESSES
－PACKAGING
－FOOD
－MEDICAL

WOULD YOU LIKE TO KNOW MORE？

All our technical datasheets are available on our website：
www．e－catalogue．celduc－relais．com

celduc ${ }^{\circledR}$ relais is represented in more than 60 countries

EUROPE

Germany
Austria
Belgium
Bulgaria
Denmark
Spain
Estonia
Finland
France
Greece
Hungary
Ireland
Italy
Latvia
Lithuania
Norway
Netherlands
Poland
Portugal
Czech Republic
Romania
United Kingdom
Russia
Slovakia
Slovenia
Sweden
Switzerland
Ukraine

AFRICA
South Africa
Algeria
Egypt
Morocco

ASIA

China
South Korea
Hong Kong
India
Indonesia
Israel
Japan
Malaysia
Philippines
Singapore
Taiwan
Thailand
Turkey
Vietnam

OCEANIA

Australia
New Zealand

afan
 afnor certification

> celduc inc.
> PO Box 429, Centerport NY 11721, USA
> Phone : (312) 420-0519
> celduc's Headquarters
> 5 rue Ampère - BP 30004-42290 Sorbiers - France
> Phone : +33 (0)4 77539019

[^0]: Rapid fault detection (instantaneous alarm)
 Maintenance
 Fast-acting checks to ensure that all heating elements are operating correctly
 \rightarrow Product quality and reliability (for example, in plastics processes, a faulty heating element can have a significant impact on the appearance of a finished product)
 \rightarrow With an installation width of only 22.5 mm , it takes up minimal space,
 Less wiring costs

[^1]: *Refer to the data sheets

